精英家教网 > 高中数学 > 题目详情
某类产品按质量可分10个档次,生产最低档次(第1档次为最低档次,第10档次为最高档次),每件利润为8元,如果产品每提高一个档次,则利润增加2元.用同样的工时,最低档次产品每天可生产60件,提高一个档次将减少3件产品,则生产第
 
档次的产品,所获利润最大.
考点:二次函数的性质
专题:函数的性质及应用
分析:设生产第x档次的产品,求出利润y关于x的函数解析式,结合二次函数的图象和性质,可得答案.
解答: 解:设生产第x档次的产品,则1≤x≤10,
则利润y=[60-3(x-1)][2(x-1)+8]=(63-3x)(2x+6)=6(-x2+18x+63)=6[-(x-9)2+144].
当x=9时,y取到最大值,故应生产第9档次的产品.
故答案为:9
点评:本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:
(1)sin(-
17
6
π)+cos(-
19
3
π)+tan
53
6
π;
(2)
tan(π-α)cos(2π-α)sin(-α+
2
)
cos(-α-π)sin(-α-π)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图的程序框图如图所示
(1)写出程序框图所对应的算法语句;
(2)将右边的“直到型循环结构”改为“当型循环结构”,并写出当型循环相对应的算法语句.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
3
cosx-sinx的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(4-x)|x-2|在区间(2a,3a-1)上单调递增,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2]时,f(x)=x2-2x,若x∈[-4,-2]时,f(x)≥
1
8
(
3
t
-t)
恒成立,则实数t的取值范围是(  )
A、(-∞,-1]∪(0,3]
B、(-∞,-
3
]∪(0,
3
]
C、[-1,0)∪[3,+∞)
D、[-
3
,0)∪[
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设A、B是非空集合,定义A×B={x|x∈A∪B且x∉A∩B}.已知A={x|y=
1
2x-x2
},B={y|y=
1
2
x+
x-1
},则A×B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cos(2x-
π
2
)的图象的一条对称轴方程是(  )
A、x=-
π
2
B、x=-
π
4
C、x=
π
8
D、x=π

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x+1)的定义域是[-1,1],则函数g(x)=
f(2x)
x-1
的定义域是(  )
A、[-1,0]
B、[0,1)
C、[0,1)∪(1.4]
D、(0,1)

查看答案和解析>>

同步练习册答案