精英家教网 > 高中数学 > 题目详情
函数f(x)满足:f(x+1)=x(x+3),x∈R,则f(x)=
 
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:先令t=x+1得x=t-1,代入解析式求出f(x)
解答: 解:∵令t=x+1得x=t-1,
∴f(t)=(t-1)(t-1+3)=t2+t-2
∴f(x)=x2+x-2,
故答案为:x2+x-2
点评:本题考查了利用换元法求函数的解析式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

α,β是方程x2+ax+2b=0的两根,且α∈[0,1],β∈[1,2],a,b∈R,则
b-3
a-1
的最大值和最小值分别是
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)=x2-16x+q+3.若函数在区间[-1,1]上存在零点,求实数q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
m
x+1
+nlnx(m,n为常数)在x=1处的切线方程为x+y-2=0.
(1)求y=f(x)的单调区间;
(2)若任意实数x∈[
1
e
,1],使得对任意的t∈[
1
2
,2]上恒有f(x)≥t3-t2-2at+2成立,求实数a的取值范围;
(3)求证:对任意正整数n,有4(
1
2
+
2
3
+…+
n
n+1
)+(ln1+ln2+…+lnn)≥2n.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,要建造一面靠墙的两间面积相同的矩形储备间,如果可供建造围墙的材料总长是30m,那么如何设计矩形的长和宽可使储备间的面积最大,并求这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:函数f(x)=x3-3x在区间(-1,1)内单调递减,命题q:函数f(x)=|sin2x|的最小正周期为π,则下列命题为真命题的是(  )
A、p∧q
B、(¬p)∨q
C、p∨q
D、(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:-8≤x≤4,命题q:x2+2x+1-m2≤0(m>0).若?p是?q的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=-1,an+1=3an+2n,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x-a|+3x,其中a>0.
(1)当a=1时,求不等式f(x)>3x+2的解集;
(2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.

查看答案和解析>>

同步练习册答案