精英家教网 > 高中数学 > 题目详情
20.在平行六面体ABCD-A1B1C1D1中,化简$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{A{A}_{1}}$=(  )
A.$\overrightarrow{A{C}_{1}}$B.$\overrightarrow{C{A}_{1}}$C.$\overrightarrow{B{C}_{1}}$D.$\overrightarrow{C{B}_{1}}$

分析 根据题意,画出图形,结合图形,利用空间向量的加法运算,即可得出结论.

解答 解:如图所示,

平行六面体ABCD-A1B1C1D1中,
$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{A{A}_{1}}$=($\overrightarrow{AB}$+$\overrightarrow{AD}$)+$\overrightarrow{C{C}_{1}}$=$\overrightarrow{AC}$+$\overrightarrow{{CC}_{1}}$=$\overrightarrow{{AC}_{1}}$.
故选:A.

点评 本题考查了空间向量的线性运算问题,也考查了数形结合的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10. 如图,设椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左右焦点分别为F1、F2,过焦点F1的直线交椭圆于A、B两点,若以△ABF2的内切圆的面积为π,设A(x1,y1)、B((x2,y2),则|y1-y2|值为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知中心在原点O,焦点在x轴上的椭圆的一个顶点为B(0,1),B到焦点的距离为2.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P,Q是椭圆上异于点B的任意两点,且BP⊥BQ,线段PQ的中垂线l与x轴的交点为(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1的两焦点分别为F1,F2,过F1的直线与椭圆交于A,B两点,则△ABF2的周长为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知p:3x2-4ax+a2<0(a>0),q:$\left\{\begin{array}{l}{{x}^{2}-4x+3<0}\\{{x}^{2}-6x+8≥0}\end{array}\right.$,若p是q的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=lnx,f(1)=$\frac{1}{2}$,则下列结论正确的是(  )
A.f(x)在(0,+∞)上有极大值$\frac{1}{2}$B.f(x)在(0,+∞)上有极小值$\frac{1}{2}$
C.f(x)在(0,+∞)单调递增D.f(x)在(0,+∞)单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.一个袋中装有四个大小、形状完全相同的小球,小球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机取两个小球,求取出的两个小球的编号之和不小于5的概率;
(Ⅱ)先从袋中随机取一个小球,记此小球的编号为m,将此小球放回袋中,然后再从袋中随机取一个小球,记该小球的编号为n,求n=m+2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2acos2x+2$\sqrt{3}$bsinxcosx,且f(0)=2,f($\frac{π}{4}$)=$\sqrt{3}$+1.
(1)求f(x)的最大值及单调递减区间;
(2)若α≠β,α,β∈(0,π),且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(sin(2x-$\frac{π}{6}$),cos2$\frac{π}{4}$-cos2x),$\overrightarrow{b}$=(1,-2),函数$f(x)=\vec a•\vec b(x∈R)$
(1)求f(x)的单调递增区间;
(2)f(x)图象可以由y=sinx经过怎样的变换而得到?
(3)求在$x∈({-\frac{π}{6},\frac{π}{3}})$上的值域.

查看答案和解析>>

同步练习册答案