精英家教网 > 高中数学 > 题目详情
已知A={x||x-3|≤5},B={x|x2-4x-5>0},C={x|a≤x≤a+3}
(1)求A∩B
(2)若C⊆B,求实数a的取值范围.
考点:集合的包含关系判断及应用,交集及其运算
专题:计算题,集合
分析:(1)化简集合A,B,可得A∩B
(2)利用C⊆B,建立不等式,即可求实数a的取值范围.
解答: 解:(1)A={x||x-3|≤5}={x|-2≤x≤8},B={x|x2-4x-5>0}={x|x<-1或x>5},
∴A∩B={x|-2≤x<-1或5<x≤8};
(2)∵C={x|a≤x≤a+3},C⊆B,
∴a+3<-1或a>5,
∴a<-4或a>5.
点评:本题考查集合的包含关系判断及应用,考查交集及其运算,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=lg
x+1
x-1
,g(x)=ex+
1
ex
,则(  )
A、f(x)是奇函数,g(x)是偶函数
B、f(x)与g(x)都是奇函数
C、f(x)是偶函数,g(x)是奇函数
D、f(x)与g(x)都是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C在y轴上截得的弦为AB,A的坐标为(0,5),B的坐标为(0,3),且圆心在直线x=2上,若点Q(x,y)是圆C上的一个动点,点P的坐标为(-1,3).
(1)求圆心C的坐标并写出圆C的方程;
(2)求P与Q的距离的最小值;
(3)当直线PQ与圆C相切时,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+b在x=1处有极值2.求函数f(x)=x2-2ax+b在闭区间[0,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:实数x满足x2-4ax+3a2≤0,其中a<0;q:实数x满足x2+6x+8>0.若p是q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin(ωx+ϕ),(0<ϕ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
π
2

(Ⅰ)求f(
π
8
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
π
6
个单位后,得到函数y=g(x)的图象,求y=g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[-1,1]上的偶函数f(x),已知当x∈[-1,0]时,f(x)=
1
4x
-
a
2x
(a∈R).
(I)写出f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD中,侧面PAD是正三角形,且与底面垂直,底面ABCD是菱形,∠BAD=60°,E为PC的中点.
(1)求证:PA∥平面BDE;
(2)求证:PB⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AC为圆O的直径,PC为圆O所在平面的垂线(C为垂足),B为半圆周上一点,M为AP的中点,且PC=4,AB=BC=2.
(1)求证:平面ABP⊥平面BPC;
(2)求三棱锥A-MBC的体积.

查看答案和解析>>

同步练习册答案