分析 (Ⅰ)先利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k型函数,再利用函数的对称性和ω的范围,计算ω的值,最后利用周期计算公式得函数的最小正周期;
(Ⅱ)先将已知点的坐标代入函数解析式,求得λ的值,再利用正弦函数的图象和性质即可求得函数f(x)的范围即可.
解答 解:(Ⅰ)f(x)=sin2ωx+2$\sqrt{3}$sinωx•cosωx-cos2ωx+λ
=$\sqrt{3}$sin2ωx-cos2ωx+λ
=2sin(2ωx-$\frac{π}{6}$)+λ,
∵图象关于直线x=π对称,∴2πω-$\frac{π}{6}$=$\frac{π}{2}$+kπ,k∈z.
∴ω=$\frac{k}{2}$+$\frac{1}{3}$,又ω∈($\frac{1}{2}$,1),
令k=1时,ω=$\frac{5}{6}$符合要求,
∴函数f(x)的最小正周期为 $\frac{2π}{2×\frac{5}{6}}$=$\frac{6π}{5}$;
(Ⅱ)∵f($\frac{π}{4}$)=0,
∴2sin(2×$\frac{5}{6}$×$\frac{π}{4}$-$\frac{π}{6}$)+λ=0,
∴λ=-$\sqrt{2}$,
∴f(x)=2sin($\frac{5}{3}$x-$\frac{π}{6}$)-$\sqrt{2}$,
∴f(x)∈[-1-$\sqrt{2}$,2-$\sqrt{2}$].
点评 本题主要考查了y=Asin(ωx+φ)+k型函数的图象和性质,复合函数值域的求法,正弦函数的图象和性质,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | ac>bc | B. | ac2>bc2 | C. | $\frac{1}{a}$$<\frac{1}{b}$ | D. | $\frac{a}{b}$>1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com