分析 (Ⅰ)证明AD⊥BC,利用BC⊥CD,可得BC⊥平面ADC;
(Ⅱ)以垂直于BD的直线为x轴,DB为y轴,DA为z轴,建立如图所示的坐标系,求出平面BCM的法向量,即可求PQ与平面BCM所成角的正弦值;
(Ⅲ)设E(0,m,0),求出平面PQE的法向量,利用向量的数量积公式,即可得出结论.
解答
(Ⅰ)证明:∵AD⊥平面BCD,BC?平面BCD,
∴AD⊥BC,
∵BC⊥CD,AD∩CD=D,
∴BC⊥平面ADC;
(Ⅱ)解:以垂直于BD的直线为x轴,DB为y轴,DA为z轴,建立如图所示的坐标系,则P(0,$\sqrt{2}$,$\frac{1}{2}$),Q($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0),B(0,2$\sqrt{2}$,0),C($\sqrt{2}$,$\sqrt{2}$,0),M(0,0,1)
设平面BCM的法向量为$\overrightarrow{n}$=(x,y,z),则
∵$\overrightarrow{BC}$=($\sqrt{2}$,-$\sqrt{2}$,0),$\overrightarrow{CM}$=(-2,-2,1),
∴$\left\{\begin{array}{l}{\sqrt{2}x-\sqrt{2}y=0}\\{-2x-2y+z=0}\end{array}\right.$,∴$\overrightarrow{n}$=(1,1,4),
∵$\overrightarrow{PQ}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$,-$\frac{1}{2}$),
∴PQ与平面BCM所成角的正弦值为$\frac{\frac{1}{2}}{\sqrt{1+1+16}•\sqrt{\frac{1}{2}+\frac{1}{2}+\frac{1}{4}}}$=$\frac{\sqrt{10}}{30}$;
(Ⅲ) 解:设E(0,m,0),设平面PQE的法向量为$\overrightarrow{m}$=(a,b,c),则
∵$\overrightarrow{PQ}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$,-$\frac{1}{2}$),$\overrightarrow{PE}$=(0,m-$\sqrt{2}$,-$\frac{1}{2}$)
∴$\left\{\begin{array}{l}{\frac{\sqrt{2}}{2}a-\frac{\sqrt{2}}{2}b-\frac{1}{2}c=0}\\{(m-\sqrt{2})b-\frac{1}{2}c=0}\end{array}\right.$,
∴$\overrightarrow{m}$=($\frac{\sqrt{2}m-1}{m-\sqrt{2}}$,$\frac{1}{m-\sqrt{2}}$,2),
由$\overrightarrow{m}$•$\overrightarrow{n}$=0可得$\frac{\sqrt{2}m-1}{m-\sqrt{2}}$+$\frac{1}{m-\sqrt{2}}$+8=0,
∴m=$\frac{32\sqrt{2}-8}{31}$,即E(0,$\frac{32\sqrt{2}-8}{31}$,0).
点评 本题考查线面垂直,考查平面与平面垂直的判定,考查线面角,考查学生分析解决问题的能力,正确运用向量法是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 4 | C. | $\frac{{8\sqrt{3}}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日产量 | 400 | 500 | 批发价 | 8 | 10 | |
| 概 率 | 0.4 | 0.6 | 概 率 | 0.5 | 0.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com