精英家教网 > 高中数学 > 题目详情
1.如图,在四面体ABCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2$\sqrt{2}$,M是AD的中点,P,Q分别是BM与CD的中点,
(Ⅰ)求证:BC⊥平面ADC;
(Ⅱ)若DC=BC,求PQ与平面BCM所成角的正弦值;
(Ⅲ) 在(Ⅱ)的条件下,线段BD上是否存在点E,使得平面PQE⊥平面BCM?若存在,确定点E的位置;若不存在,请说明理由.

分析 (Ⅰ)证明AD⊥BC,利用BC⊥CD,可得BC⊥平面ADC;
(Ⅱ)以垂直于BD的直线为x轴,DB为y轴,DA为z轴,建立如图所示的坐标系,求出平面BCM的法向量,即可求PQ与平面BCM所成角的正弦值;
(Ⅲ)设E(0,m,0),求出平面PQE的法向量,利用向量的数量积公式,即可得出结论.

解答 (Ⅰ)证明:∵AD⊥平面BCD,BC?平面BCD,
∴AD⊥BC,
∵BC⊥CD,AD∩CD=D,
∴BC⊥平面ADC;
(Ⅱ)解:以垂直于BD的直线为x轴,DB为y轴,DA为z轴,建立如图所示的坐标系,则P(0,$\sqrt{2}$,$\frac{1}{2}$),Q($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0),B(0,2$\sqrt{2}$,0),C($\sqrt{2}$,$\sqrt{2}$,0),M(0,0,1)
设平面BCM的法向量为$\overrightarrow{n}$=(x,y,z),则
∵$\overrightarrow{BC}$=($\sqrt{2}$,-$\sqrt{2}$,0),$\overrightarrow{CM}$=(-2,-2,1),
∴$\left\{\begin{array}{l}{\sqrt{2}x-\sqrt{2}y=0}\\{-2x-2y+z=0}\end{array}\right.$,∴$\overrightarrow{n}$=(1,1,4),
∵$\overrightarrow{PQ}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$,-$\frac{1}{2}$),
∴PQ与平面BCM所成角的正弦值为$\frac{\frac{1}{2}}{\sqrt{1+1+16}•\sqrt{\frac{1}{2}+\frac{1}{2}+\frac{1}{4}}}$=$\frac{\sqrt{10}}{30}$;
(Ⅲ) 解:设E(0,m,0),设平面PQE的法向量为$\overrightarrow{m}$=(a,b,c),则
∵$\overrightarrow{PQ}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$,-$\frac{1}{2}$),$\overrightarrow{PE}$=(0,m-$\sqrt{2}$,-$\frac{1}{2}$)
∴$\left\{\begin{array}{l}{\frac{\sqrt{2}}{2}a-\frac{\sqrt{2}}{2}b-\frac{1}{2}c=0}\\{(m-\sqrt{2})b-\frac{1}{2}c=0}\end{array}\right.$,
∴$\overrightarrow{m}$=($\frac{\sqrt{2}m-1}{m-\sqrt{2}}$,$\frac{1}{m-\sqrt{2}}$,2),
由$\overrightarrow{m}$•$\overrightarrow{n}$=0可得$\frac{\sqrt{2}m-1}{m-\sqrt{2}}$+$\frac{1}{m-\sqrt{2}}$+8=0,
∴m=$\frac{32\sqrt{2}-8}{31}$,即E(0,$\frac{32\sqrt{2}-8}{31}$,0).

点评 本题考查线面垂直,考查平面与平面垂直的判定,考查线面角,考查学生分析解决问题的能力,正确运用向量法是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.函数y=f(x)=$\sqrt{x}$,x∈(0,1),f(x)图象在点M(a,$\sqrt{a}$)处的切线为l,l分别与y轴、直线y=1交于P、Q两点,N(0,1).
(1)用a表示△PQN的面积S;
(2)若△PQN的面积为r的点M恰有2个,求r及点M横坐标a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数:①y=-x;②y=-$\frac{1}{x}$;③y=2x+1;④y=x2(x<0),y随x的增大而减小的函数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ 2x-y-1≤0\end{array}$,当目标函数z=$\sqrt{3}$ax+by({a>0,b>0})在该约束条件下取得最大值4时,a2+b2的最小值为(  )
A.8B.4C.$\frac{{8\sqrt{3}}}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某工厂生产某种零件,每日生产成本为1000元,此零件每天的批发价和产量均具有随机性,且互不影响.其具体情况如下表:
日产量400500批发价810
概  率0.40.6概  率0.50.5
(1)设随机变量X表示生产这种零件的日利润,求X的分布列及期望;
(2)若该厂连续3天按此情况生产和销售,设随机变量Y表示这3天中利润不少于3000的天数,求Y的数学期望和方差,并求至少有2天利润不少于3000的概率.(注:以上计算所得概率值用小数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦点是(-$\sqrt{3}$,0)、($\sqrt{3}$,0),且由椭圆上顶点、右焦点和原点组成的三角形面积为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆C的方程;
(2)设P(0,4),M、N是椭圆C上关于y轴对称的任意两个不同的点,连接PN交椭圆C于另一点E,证明:直线ME与y轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.当α为锐角时,“${∫}_{0}^{α}$cosxdx=$\frac{1}{2}$”是“α=$\frac{π}{6}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax+1nx,g(x)=ex
(1)当a≤0时,求f(x)的单调区间;
(2)若不等式g(x)<x+m有解,求实数m的取值范围;
(3)证明:当a=0时,|f(x)-g(x)|>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{{e}^{x}}{{x}^{2}-ax+1}$(其中e为自然对数的底数,e=2.71828…).
(1)当a=0时,求函数y=f(x)的图象在点x=0处的切线方程;
(2)当a∈(0,2)时,试求函数f(x)的极值;
(3)若a∈[0,$\frac{1}{2}$],则当x∈[0,a+1]时,函数y=f(x)的图象是否总在不等式y>x所表示的平面区域内,请写出判断过程.

查看答案和解析>>

同步练习册答案