精英家教网 > 高中数学 > 题目详情
13.当α为锐角时,“${∫}_{0}^{α}$cosxdx=$\frac{1}{2}$”是“α=$\frac{π}{6}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 利用定积分求出关系式,然后利用充要条件判断即可.

解答 解:当α为锐角时,“${∫}_{0}^{α}$cosxdx=$\frac{1}{2}$”
可得sin$α=\frac{1}{2}$,可得α=$\frac{π}{6}$.
sin$\frac{π}{6}$=$\frac{1}{2}$,满足${∫}_{0}^{\frac{π}{6}}cosxdx=\frac{1}{2}$.
所以当α为锐角时,“${∫}_{0}^{α}$cosxdx=$\frac{1}{2}$”是“α=$\frac{π}{6}$”的充要条件.
故选:C.

点评 本题考查定积分的求法,充要条件的判断与应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知平面α,β,γ,直线a,b,c,则下列命题正确的是(  )
A.若α⊥γ,β⊥γ,则α∥βB.若a⊥c,b⊥c,则a∥bC.若a⊥α,b⊥α,则a∥bD.若a∥α,b∥α,则a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若复数z满足:$\frac{z}{1+i}=-\frac{1}{2i}$,则z的虚部为(  )
A.$-\frac{1}{2}i$B.$\frac{1}{2}i$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四面体ABCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2$\sqrt{2}$,M是AD的中点,P,Q分别是BM与CD的中点,
(Ⅰ)求证:BC⊥平面ADC;
(Ⅱ)若DC=BC,求PQ与平面BCM所成角的正弦值;
(Ⅲ) 在(Ⅱ)的条件下,线段BD上是否存在点E,使得平面PQE⊥平面BCM?若存在,确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx.
(1)求函数f(x)上的点到直线x-y-5=0的最短距离;
(2)对于任意正实数x,不等式f(x)>kx-$\frac{1}{2}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=2px(p>0)的焦点在圆(x-1)2+y2=4上,则p=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.九张卡片上分别写着数字0、1、2、3、4、5、6、7、8,从中任意取出三张组成一个三位数,如果写有6的卡片可以当9用,那么共组成602个三位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某玩具店销售大熊猫玩具,记录了最近100天的日销售量(单位:个),整理得下表:
日销售量(个)102030
频数203050
(1)计算着100天的日平均销售量;
(2)若以频率为概率,其每天的销售量相互独立;
①求6天中大熊猫玩具恰有2天的销售量为30个的概率;
②若每个大熊猫玩具的销售利润为10元,X表示两天的销售利润的和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若某几何体的三视图如图所示,则此几何体的侧面积是(  )
A.12πB.15πC.24πD.30π

查看答案和解析>>

同步练习册答案