精英家教网 > 高中数学 > 题目详情
17.下列事件中:①任取三条线段,这三条线段恰好组成直角三角形;②从一个三角形的三个顶点各任画一条射线,这三条射线交于一点;③实数a,b都不为0,但a2+b2=0;④明年12月28日的最高气温高于今年12月10日的最高气温,其中为随机事件的是(  )
A.①②③④B.①②④C.①③④D.②③④

分析 逐项判断各事件是否有可能发生即可.

解答 解:任取三条线段,这三条线段可能组成直角三角形,也可能组不成直角三角形,故①为随机事件;
从一个三角形的三个顶点各任画一条射线,三条射线有可能平行,也可能交于一点,故②为随机事件;
若实数a,b都不为0,则a2+b2一定不等于0,故③为不可能事件;
由于明年12月28日还未到来,故明年12月28日的最高气温有可能高于今年12月10日的最高气温,也可能低于今年12月10日的最高气温.
故④为随机事件.
故选:B.

点评 本题考查了随机事件的概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知四点A(x,0),B(2x,1),C(2,x),D(6,2x).
(1)求实数x,使向量$\overrightarrow{AB}$与$\overrightarrow{CD}$共线;
(2)当向量$\overrightarrow{AB}$与$\overrightarrow{CD}$共线时,A,B,C,D四点是否存在同一直线上?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的函数f(x),若对于任意x1,x2∈R,且x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),那么函数f(x)称为“Ω函数”.给出下列函数:
①f(x)=cosx;
②f(x)=2x
③f(x)=x|x|;
④f(x)=ln(x2+1).
其中“Ω函数”的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知关于x的方程x2-kx+k+3=0,的两个不相等的实数根都大于2,则实数k的取值范围是(  )
A.k>6B.4<k<7C.6<k<7D.k>6或k>-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知m,n表示两条不同直线,α表示平面,下列说法正确的是(  )
A.若m⊥α,n?α,则m⊥nB.若m⊥α,m⊥n,则n∥αC.若m∥α,m⊥n,则n⊥αD.若m∥α,n∥α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线l:y=(a+1)x-1与曲线C:y2=ax恰好有一个公共点,则实数a的值构成的集合为(  )
A.{-1,0}B.{-2,-$\frac{4}{5}$}C.{-1,-$\frac{4}{5}$}D.{-1,-$\frac{4}{5}$,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+2xsinθ-1,x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$].
(Ⅰ)当sinθ=-$\frac{1}{2}$,求f(x)的最大值和最小值;
(Ⅱ)若f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是单调函数,且θ∈[0,2π],求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=$\left\{\begin{array}{l}{x,x≤1}\\{(\frac{1}{2})^{x-1},x>1}\end{array}\right.$,则不等式f(x2-3)>f($\frac{1}{2}$x)的解集为(-∞,-$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-1{,_{\;}}x≤0\\ x-1{,_{\;}}x>0\end{array}\right.$,g(x)=2x-1,则f(g(2))=2,f[g(x)]的值域为[-1,+∞).

查看答案和解析>>

同步练习册答案