精英家教网 > 高中数学 > 题目详情
8.已知圆O:x2+y2=9,点A(2,0),点P为动点,以线段AP为直径的圆内切于圆O,则动点P的轨迹方程是$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1.

分析 设AP的中点为M,切点为N,连OM,MN,通过|OM|+|MN|=|ON|=3,推出|OM|+|MN|=3.说明点P的轨迹是以A′,A为焦点,长轴长为6的椭圆.然后求解动点P的轨迹方程.

解答 解:设AP的中点为M,切点为N,连OM,MN,则|OM|+|MN|=|ON|=3,
取A关于y轴的对称点A′,连A′P,
故|A′P|+|AP|=2(|OM|+|MN|)=6.
所以点P的轨迹是以A′,A为焦点,长轴长为6的椭圆.
其中,a=3,c=2,b=$\sqrt{5}$,则动点P的轨迹方程是$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1.
故答案为:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1.

点评 本题考查轨迹方程的求法,判断轨迹的椭圆简化解题的过程,考查直线与椭圆的位置关系的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若(x-1)5+x10=a0+a1(1+x)+a2(1+x)2+…+a10(1+x)10,则a3的值是-80.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.先后掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x,y,设事件A为“x+y为偶数”,事件B为“x≠y”,则概率P(B|A)=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.当n≥2,n∈N*时,设f(n)=(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)•…•(1-$\frac{1}{{n}^{2}}$).
(Ⅰ)求f(2)、f(3)、f(4)的值;
(Ⅱ)猜想f(n)的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若圆C的方程为(x-3)2+(y-1)2=9与直线斜率为1的直线m交于A,B两点,且以AB为直径的圆过原点,
(1)求直线m的方程;
(2)若过点T(1,3)的直线l与圆C交于P,Q两点,线段PQ的中点为M,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆O为单位圆:x2+y2=1,点A(1,0),B为单位圆上的动点,如图,以AB为边作正方形ABCD,求动点D的轨迹方程及OD的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{2}$,其上下顶点分别为C1,C2,点A(1,0),B(3,2),AC1⊥AC2
(1)求椭圆E的方程及离心率;
(2)点P的坐标为(m,n)(m≠3),过点A任意作直线l与椭圆E相交于点M,N两点,设直线MB,BP,NB的斜率依次成等差数列,探究m,n之间是否满足某种数量关系,若是,请给出m,n的关系式,并证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设P是曲线2x2-y2=1上的一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程为8x2-4y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b,若△ABC的面积为S=$\frac{{\sqrt{3}}}{12}$c,则ab的最小值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.3

查看答案和解析>>

同步练习册答案