用数学归纳法证明:12+22+…+n2+…+22+12=
,第二步证明由“k到k+1”时,左边应加( )
A.k2 B.(k+1)2
C.k2+(k+1)2+k2 D.(k+1)2+k2
科目:高中数学 来源: 题型:
某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.
![]()
(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.
甲的频数统计表(部分)
![]()
乙的频数统计表(部分)
![]()
当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;
(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知P(x0,y0)是抛物线y2=2px(p>0)上的一点,过P点的切线方程的斜率可通过如下方式求得:在y2=2px两边同时对x求导,得2yy′=2p,则y′=
,所以过P的切线的斜率k=
.类比上述方法求出双曲线x2-
=1在P(
,
)处的切线方程为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
对于大于或等于2的自然数n的二次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7,…,根据上述分解规律,对任意自然数n,当n≥2时,有____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
对于不等式
≤n+1(n∈N*),某人的证明过程如下:
1°当n=1时,
≤1+1,不等式成立.
2°假设n=k(k∈N*)时不等式成立,即
=
=(k+1)+1.
∴当n=k+1时,不等式成立.
上述证法( )
A.过程全都正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com