精英家教网 > 高中数学 > 题目详情
5.欧拉在1748年给出了著名公式e=cosθ+isinθ(欧拉公式)是数学中最卓越的公式之一,其中,底数e=2.71828…,根据欧拉公式e=cosθ+isinθ,任何一个复数z=r(cosθ+isinθ),都可以表示成z=re的形式,我们把这种形式叫做复数的指数形式,若复数z1=2e${\;}^{i\frac{π}{3}}$,z2=2e${\;}^{i\frac{π}{2}}$,则复数z=$\frac{{z}_{1}}{{z}_{2}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由欧拉公式求出z1=1+$\sqrt{3}$i,z2=2i,再由复数代数形式的乘除运算法则求出z,由此能求出复数z=$\frac{{z}_{1}}{{z}_{2}}$在复平面内对应的点所在的第四象限.

解答 解:∵e=cosθ+isinθ,
∴z1=2e${\;}^{i\frac{π}{3}}$=2(cos$\frac{π}{3}$+isin$\frac{π}{3}$)=2($\frac{1}{2}+\frac{\sqrt{3}}{2}i$)=1+$\sqrt{3}$i,
z2=2e${\;}^{i\frac{π}{2}}$=2(cos$\frac{π}{2}$+isin$\frac{π}{2}$)=2(0+i)=2i,
∴z=$\frac{{z}_{1}}{{z}_{2}}$=$\frac{1+\sqrt{3}i}{2i}$=$\frac{i+\sqrt{3}{i}^{2}}{2{i}^{2}}$=$\frac{i-\sqrt{3}}{-2}$=$\frac{\sqrt{3}}{2}$-$\frac{1}{2}i$,
∴复数z=$\frac{{z}_{1}}{{z}_{2}}$在复平面内对应的点($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)在第四象限.
故选:D.

点评 本题考查复数在复平面内对应的点所在象限的判断,是基础题,解题时要认真审题,注意复数代数形式的乘除运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{1}{2}x+\frac{1}{4},x∈[0,\frac{1}{2}]}\\{\frac{2{x}^{2}}{x+2},x∈(\frac{1}{2},1]}\end{array}\right.$,g(x)=acos$\frac{πx}{2}$+5-2a(a>0),若对任意的x1∈[0,1],总存在x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是[$\frac{5}{2}$,$\frac{13}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知z为复数,ω=z+$\frac{9}{z}$为实数,
(1)当-2<ω<10,求点Z的轨迹方程;
(2)当-4<ω<2时,若u=$\frac{α-z}{α+z}$(α>0)为纯虚数,求:α的值和|u|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面几何中有如下的结论:若正三角形ABC的内切圆的面积为S1,外接圆的面积为S2,则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{1}{4}$.推广到空间几何体中可以得到类似的结论;若正四面体ABCD的内切球的体积为V1,外接球体积为V2,则$\frac{{V}_{2}}{{V}_{1}}$=27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a为实数,且函数f(x)=(a+cosx)(a-sinx)-1有零点,则a的取值范围是(  )
A.(-∞,-1-$\frac{\sqrt{2}}{2}$)B.[-1+$\frac{\sqrt{2}}{2}$,1-$\frac{\sqrt{2}}{2}$]
C.[1+$\frac{\sqrt{2}}{2}$,+∞)D.[-1-$\frac{\sqrt{2}}{2}$,-1+$\frac{\sqrt{2}}{2}$]∪[1-$\frac{\sqrt{2}}{2}$,1+$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a+b+c=2,且a、b、c是正数,求证:$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$≥$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知两圆锥的顶点是同一个球的球心,底面互相平行且都在该球面上.若两圆锥底面半径分别为r1=24,r2=15两底面间的距离为27,则该球的表面积为2500π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=Asin(ωx+ϕ)(ω>0,|ϕ|<$\frac{π}{2}$,x∈R)的部分图象如图所示,则函数表达式为(  )
A.y=sin(2x+$\frac{π}{3}}$)B.y=sin(2x-$\frac{π}{6}}$)C.y=cos(4x-$\frac{π}{3}}$)D.y=cos(2x+$\frac{π}{3}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-2,3),且法向量为$\overrightarrow{n}$=(4,-1)的直线(点法式)方程为4×(x+2)+(-1)×(y-3)=0,化简得4x-y+11=0,类比以上方法,在空间直角坐标系中,经过点B(-2,1,3),且法向量为$\overrightarrow{m}$=(3,-2,4)的平面方程化简后为3x-2y+4z-4=0.

查看答案和解析>>

同步练习册答案