精英家教网 > 高中数学 > 题目详情
10.设双曲线C经过点$(1,\frac{{3\sqrt{5}}}{2})$,且渐近线的方程为$y=±\frac{3}{2}x$,
求(1)双曲线C的方程;
(2)双曲线C的离心率及顶点坐标.

分析 (1)由渐近线方程可设双曲线的方程为y2-$\frac{9}{4}$x2=m(m≠0),代入点$(1,\frac{{3\sqrt{5}}}{2})$,解得m,即可得到双曲线的方程;
(2)求出双曲线的a,b,c,由离心率公式e=$\frac{c}{a}$,可得离心率,以及顶点坐标.

解答 解:(1)由双曲线的渐近线的方程为$y=±\frac{3}{2}x$,
可设双曲线的方程为y2-$\frac{9}{4}$x2=m(m≠0),
双曲线C经过点$(1,\frac{{3\sqrt{5}}}{2})$,
代入可得$\frac{45}{4}$-$\frac{9}{4}$=m,
解得m=9,
则双曲线的方程为$\frac{y^2}{9}-\frac{x^2}{4}=1$;
(2)由双曲线的方程$\frac{y^2}{9}-\frac{x^2}{4}=1$,
可得a=3,b=2,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{13}$,
则离心率e=$\frac{c}{a}$=$\frac{\sqrt{13}}{3}$,
顶点坐标为(0,±3).

点评 本题考查双曲线的方程与渐近线方程的关系,注意运用待定系数法,考查双曲线的性质,主要是离心率和顶点坐标,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列命题中,不是公理的是(  )
A.平行于同一条直线的两条直线平行
B.如果一条直线上的两点在一个平面内,那么这条直线在此平面内
C.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
D.如果两个角的两边分别平行,则这两个角相等或互补

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={1,2,3,4},B={x|x2≤4},则A∩B=(  )
A.{1,2}B.{0,1}C.{0,1,2}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前6项的和S6=21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若方程x2+(m+2)x+m+5=0只有负根,则m的取值范围是(  )
A.m≥4B.-5<m≤-4C.-5≤m≤-4D.-5<m<-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD,且M,N分别是AB,CD的中点.设直线AB、CD的斜率分别为k1、k2
(1)若AB⊥CD,且k1=1,求△FMN的面积;
(2)若$\frac{1}{k_1}+\frac{1}{k_2}=1$,求证:直线MN过定点,并求此定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数z=$\frac{(i-1)^{2}+4}{i+1}$的虚部为(  )
A.-1B.-3C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a,b,c分别为角A,B,C的对边,$b=1,c=\sqrt{3},B={30°}$,则a=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.曲线C1:$\frac{x^2}{m}+\frac{y^2}{n}=1$(m>n>0),曲线C2:$\frac{x^2}{a}-\frac{y^2}{b}=1$(a>b>0).若C1与C2有相同的焦点F1、F2,且P同在C1、C2上,则|PF1|•|PF2|=(  )
A.m+aB.m-aC.m2+a2D.m2-a2

查看答案和解析>>

同步练习册答案