精英家教网 > 高中数学 > 题目详情
定义在R上的奇函数f(x)在(0,+∞)上单调递减,且f(1)=0,则不等式xf(x)≥0的解集为
 
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:先确定函数f(x)在(-∞,0)上单调递减,且f(-1)=0,再将不等式等价变形,即可得到结论.
解答: 解:∵定义在R上的奇函数f(x)在(0,+∞)上单调递减,且f(1)=0,
∴函数f(x)在(-∞,0)上单调递减,且f(-1)=0,
∴不等式xf(x)≥0等价于
x≥0
f(x)≤f(1)
x≤0
f(x)≥f(1)

∴0≤x≤1或-1≤x≤0,
∴不等式xf(x)≥0的解集为[-1,1],
故答案为:[-1,1]
点评:本题考查函数单调性与奇偶性的结合,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在原点的椭圆C的左焦点为(-
3
,0),右顶点为(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=x+m与椭圆C有两个不同的交点A和B,
OA
OB
>2(其中O为原点),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

4(-3)4
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a2=5,a6=21,记数列{
1
an
}的前n项和为Sn
(Ⅰ)数列{an}的通项an=
 

(Ⅱ)若S2n+1-Sn
m
15
对n∈N*恒成立,则正整数m的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年我国汽车拥有量已超过2亿(目前只有中国和美国超过2亿),为了控制汽车尾气对环境的污染,国家鼓励和补贴购买小排量汽车的消费者,同时在部分地区采取对新车限量上号.某市采取对新车限量上号政策,已知2013年年初汽车拥有量为x1(x1=100万辆),第n年(2013年为第1年,2014年为第2年,依此类推)年初的拥有量记为xn,该年的增长量yn和xn与1-
xn
m
的乘积成正比,比例系数为λ(0<λ<1),其中m=200万.
(1)证明:yn≤50λ;
(2)用xn表示xn+1;并说明该市汽车总拥有量是否能控制在200万辆内.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点为F1(0,-2
2
),F2(0,2
2
),且离心率e=
2
2
3
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a4=-15,公差d=3,求数列an的前n项和为Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sinA:sinB:sinC=2:3:4,则cosC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下面命题:
①两两相交的三条直线确定一个平面
②没有交点的两直线平行
③设a,b,c是空间三条直线,若a和b相交,b和c相交,则a与c相交
④四条边都相等的四边形是平面图形
⑤平行于同一条直线的两直线互相平行
其中错误的命题有
 

查看答案和解析>>

同步练习册答案