【题目】为了解七班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 | 不喜爱打篮球 | 合 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为,求的分布列与期望.
下面的临界值表供参考:
0.15 | 0.10 | 0.05[ | 0.025 | 0.01 | 0.005 | 0.001 | |
2.072 | 2.70 | 3.841 | 5.024 | 6.635 | 7.879 | 10.82 |
(参考公式:,其中)
【答案】(1)见解析(2)能(3)
【解析】
解:(1) 列联表补充如下:-
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(2)∵
∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.
(3)喜爱打篮球的女生人数的可能取值为.
其概率分别为,,
故的分布列为:
的期望值为:
本题是一个统计综合题,包含独立性检验、离散型随机变量的期望与方差和概率,本题通过创设情境激发学生学习数学的情感,帮助培养其严谨治学的态度.
(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率,做出喜爱打篮球的人数,进而做出男生的人数,填好表格.
(2)根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明打篮球和性别有关系.
(3)喜爱打篮球的女生人数ξ的可能取值为0,1,2,通过列举得到事件数,分别计算出它们的概率,最后利用列出分布列,求出期望即可.
解:(1) 列联表补充如下:----------------------------------------3分
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(2)∵------------------------6分
∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.---------------------7分
(3)喜爱打篮球的女生人数的可能取值为.-------------------------9分
其概率分别为,,
--------------------------12分
故的分布列为:
--------------------------13分
的期望值为:---------------------14分
科目:高中数学 来源: 题型:
【题目】已知为定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根、(),称为的特征根.
(1)讨论函数的奇偶性,并说明理由;
(2)已知为给定实数,求的表达式;
(3)把函数,的最大值记作,最小值记作,研究函数,的单调性,令,若恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中a为实数.
(1)当a=-1时,求函数y=f(x)的零点;
(2)若f(x)在(-2,2)上为增函数,求实数a的取值范围;
(3)对于给定的实数a,若存在两个不相等的实数根,,(<且≠0)使得f()=f(),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x-1|+|x-2a|.
(1)当a=1时,求f(x)≤3的解集;
(2)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com