精英家教网 > 高中数学 > 题目详情
18.已知等差数列{an}的公差d≠0,首项a1=4,且a1,a5,a13依次成等比数列,则该数列的通项公式an=n+3,数列$\{{2^{a_n}}\}$的前6项和为1008.

分析 根据等比中项的性质和等差数列的通项公式列出方程,求出公差d,再求出通项公式an,再有等比数列的前n项和公式求出数列$\{{2^{a_n}}\}$的前6项和.

解答 解:因为a1=4,且a1,a5,a13依次成等比数列,
所以${{a}_{5}}^{2}={a}_{1}{a}_{13}$,则(4+4d)2=4(4+12d),
解得d=1或d=0,
又等差数列{an}的公差d≠0,则d=1,
所以an=4+n-1=n+3,
则数列$\{{2^{a_n}}\}$的前6项和S=${2}^{{a}_{1}}$+${2}^{{a}_{2}}+…+{2}^{{a}_{6}}$
=24+25+…+29=$\frac{{2}^{4}(1-{2}^{6})}{1-2}$=1008,
故答案为:n+3;1008.

点评 本题考查了等比中项的性质,等差数列的通项公式,以及等比数列的前n项和公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.以下三个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②老张身高176cm,他爷爷、父亲、儿子的身高分别是173cm、170cm和182cm,因儿子的身高与父亲的身高有关,用回归分析的方法得到的回归方程为$\widehaty=x+\widehata$,则预计老张的孙子的身高为180cm;
③若某项测量结果ξ服从正态分布N(1,σ2),且P(ξ≤4)=0.9,则P(ξ≤-2)=0.1.
其中真命题的个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{3x-y≥1}\\{y≥x+1}\end{array}\right.$,则下列不等式恒成立的是(  )
A.x≥3B.y≥4C.x+2y-8≥0D.2x-y+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1左焦点F的直线l交椭圆于A,B两点,证明$\frac{1}{|AF|}$+$\frac{1}{|BF|}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若实数a,b,c,d满足(b+a2-3lna)2+(c-d+2)2=0,则(a-c)2+(b-d)2的最小值为(  )
A.$\sqrt{2}$B.8C.$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知2sinx-$\sqrt{2}$=0,x∈[0,2π],求x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在相距10cm的两条平行线之间,有正方形A和长方形B,正方形A沿直线以每秒2cm的速度向右运动,长方形B固定不动.
(1)A和B两个图形有重叠部分的时间持续多少秒?
(2)最大重叠面积是多少?
(3)当正方形A和长方形B相遇时开始计时,设正方形A的运动时间为t,问当t为何值时,两个图形的重叠部分的面积是24cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.把正整数排列成如图甲所示的三角形数阵,然后,擦去第奇数行中的奇数和第偶数行中的偶数,得到如图乙所示的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an}.若an=902,则n=436.

查看答案和解析>>

同步练习册答案