精英家教网 > 高中数学 > 题目详情
3.将函数f(x)=sin(4x+$\frac{π}{6}$)图象上所有点的横坐标伸长到原来的2倍,再向右平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,则下面对函数y=g(x-$\frac{π}{6}$)+g(x)的叙述正确的是(  )
A.函数的最大值为2$\sqrt{3}$,最小值为-2$\sqrt{3}$
B.x=$\frac{2π}{3}$是函数的一条对称轴
C.函数的增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z
D.将y=g(x-$\frac{π}{6}$)+g(x)图象向左平移$\frac{π}{3}$个单位得到函数y=$\sqrt{3}$sin2x的图象

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的最值、单调性、以及它的图象的对称性,得出结论.

解答 解:将函数f(x)=sin(4x+$\frac{π}{6}$)图象上所有点的横坐标伸长到原来的2倍,可得y=sin(2x+$\frac{π}{6}$)的图象,
再向右平移$\frac{π}{6}$个单位长度,得到函数y=g(x)=sin[2(x-$\frac{π}{6}$)+$\frac{π}{6}$]=sin(2x-$\frac{π}{6}$)的图象,
所给的函数y=g(x-$\frac{π}{6}$)+g(x)=sin[2(x-$\frac{π}{6}$)-$\frac{π}{6}$]+sin(2x-$\frac{π}{6}$)=-cos2x+($\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x)=$\sqrt{3}$sin(2x-$\frac{π}{3}$),
所以y的最大值为$\sqrt{3}$,最小值为-$\sqrt{3}$,故A错误;
但x=$\frac{2π}{3}$时,y=0,故x=$\frac{2π}{3}$不是对称轴,故B错误;
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,解得 kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$.故C正确;
将函数向左平移$\frac{π}{3}$个单位得到 y=$\sqrt{3}$sin(2x+$\frac{π}{3}$),故D错误,
故选:C.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的最值、单调性、以及它的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数y=log2(1+x)+$\sqrt{8-{2}^{x}}$的定义域为(  )
A.(-1,3)B.(0,3]C.(0,3)D.(-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线y2=2px(p>0)的准线与圆(x-2)2+y2=16相切,则p=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将甲、乙两名同学8次数学测验成绩统计如茎叶图所示,若乙同学8次数学测试成绩的中位数比甲同学8次数学测验成绩的平均数多1,则a=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从某校随机选取5名高三学生,其身高与体重的数据如下表所示:
身高x/cm165168170172175
体重y/kg4951556169
根据上表可得回归直线$\stackrel{∧}{y}$=2x-a.则预测身高为180cm的学生的体重为(  )
A.73kgB.75kgC.77kgD.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C过定点A(0,p),圆心C在抛物线x2=2py(p>0)上,圆C与x轴交于M、N两点,当C在抛物线顶点时,圆C与抛物线的准线交于G、H,弦GH的长为2$\sqrt{3}$.
(1)求抛物线的解析式;
(2)当圆心C在抛物线上运动时.
①|MN|是否为定值?若是,求出该定值;若不是,请说明理由.
②记|AM|=m,|AN|=n.求$\frac{m}{n}$+$\frac{n}{m}$的最大值,并求出此时圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在△ABC中,三个内角A、B、C所对的边分别为a、b、c.函数f(x)=sin(2x+B)+$\sqrt{3}$cos(2x+B),且y=f(x-$\frac{π}{3}$)为奇函数.
(1)求函数f(x)的单调增区间;
(2)若a=1,b=f(0),求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线y2=2px(p>0),若定点(2p,1)与直线kx+y+2k+2=0距离的最大值是5,则p的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.($\sqrt{x}$-$\frac{1}{x}$)12的展开式中含x的正整数指数幂的项数是(  )
A.1B.3C.2D.4

查看答案和解析>>

同步练习册答案