【题目】已知抛物线
:
的焦点到准线的距离为2,直线
与抛物线
交于
、
两点,若存在点
使得
为等边三角形,则
( )
A. 8 B. 10 C. 12 D. 14
科目:高中数学 来源: 题型:
【题目】已知a<2,函数f(x)=(x2+ax+a)ex.
(1)当a=1时,求f(x)的单调递增区间;
(2)若f(x)的极大值是6e-2,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,以棱长为1的正方体的具有公共顶点的三条棱所在直线为坐标轴,建立空间直角坐标系Oxyz,点P在对角线AB上运动,点Q在棱CD上运动.
![]()
(1)当P是AB的中点,且2|CQ|=|QD|时,求|PQ|的值;
(2)当Q是棱CD的中点时,试求|PQ|的最小值及此时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于回归分析的说法中错误的序号为_______
(1)残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高.
(2)回归直线一定过样本中心点
.
(3)两个模型中残差平方和越小的模型拟合的效果越好.
(4)甲、乙两个模型的
分别约为0.88和0.80,则模型乙的拟合效果更好.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,顶点为原点的抛物线
,它是焦点为椭圆
的右焦点.
(1)求抛物线
的标准方程;
(2)过抛物线
的焦点作互相垂直的两条直线分别交抛物线
于
四点,求四边形
的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的方程为:![]()
当极点
到直线
的距离为
时,求直线
的直角坐标方程;
若直线
与曲线
有两个不同的交点,求实数
的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com