精英家教网 > 高中数学 > 题目详情

已知二次函数的最小值为1,且
(1)求的解析式;  
(2)若在区间上不单调,求实数的取值范围;
(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围。

(1); (2);(3)

解析试题分析:(1)由已知,设,…………….2分
,得,故。…………………4分
(2)要使函数不单调,则,则。……………8分
(3)由已知,即,化简得…………10分
,则只要,……………12分
,得。……………14分
考点:二次函数的最值;二次函数解析式的求法;二次函数的单调性。
点评:影响二次函数在闭区间上的最值主要有三个因素:抛物线的开口方向、对称轴和区间的位置。就学生而言,感到困难的主要是这两类问题:一是动轴定区间,二是定轴动区间。这是难点,也是重点。因此我们在平常的学习中就要练习到位。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

本小题满分12分)
今有一长2米宽1米的矩形铁皮,如图,在四个角上分别截去一个边长为x米的正方形后,沿虚线折起可做成一个无盖的长方体形水箱(接口连接问题不考虑).

(Ⅰ)求水箱容积的表达式,并指出函数的定义域;
(Ⅱ)若要使水箱容积不大于立方米的同时,又使得底面积最大,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一批运动服装原价为每套80元,两个商场均有销售,为了吸引顾客,两商场纷纷推出优惠政策。甲商场的优惠办法是:买一套减4元,买两套每套减8元,买三套每套减12元,......,依此类推,直到减到半价为止;乙商场的优惠办法是:一律7折。某单位欲为每位员工买一套运动服装,问选择哪个商场购买更省钱?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为(0<<1,则出厂价相应提高的比例为0.7,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(1)若年销售量增加的比例为0.4,为使本年度的年利润比上年度有所增加,则投入成本增加的比例应在什么范围内?
(2)年销售量关于的函数为,则当为何值时,本年度的年利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数的定义域为集合,集合
请你写出一个一元二次不等式,使它的解集为,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知二次函数, 满足的最小值是.(Ⅰ)求的解析式;(Ⅱ)设函数,若函数在区间上是单调函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)设,写出数列的前5项;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)定义在实数R上的函数y= f(x)是偶函数,当x≥0时,.
(Ⅰ)求f(x)在R上的表达式;
(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题两小题,每题6分,满分12分)
⑴对任意,试比较的大小;
⑵已知函数的定义域为R,求实数k的取值范围。

查看答案和解析>>

同步练习册答案