精英家教网 > 高中数学 > 题目详情

某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为(0<<1,则出厂价相应提高的比例为0.7,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(1)若年销售量增加的比例为0.4,为使本年度的年利润比上年度有所增加,则投入成本增加的比例应在什么范围内?
(2)年销售量关于的函数为,则当为何值时,本年度的年利润最大?最大利润为多少?

(1);(2)当时,本年度的年利润最大,最大利润为20000万元.

解析试题分析:(1)由题意得:本年度每辆车的投入成本为10×(1+x);
出厂价为13×(1+0.7x);年销售量为5000×(1+0.4x),     2分
因此本年度的利润为

即:  6分
,     得       8分
(2)本年度的利润为

         10分
 
是增函数;当是减函数.
∴当时,万元,      12分
因为在(0,1)上只有一个极大值,所以它是最大值,       14分
所以当时,本年度的年利润最大,最大利润为20000万元.      16分
考点:函数的实际应用题;利用导数研究函数的单调区间、极值和最值。
点评:研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提高数学素养都是十分重要的.建立模型的步骤可分为: (1) 分析问题中哪些是变量,哪些是常量,分别用字母表示; (2) 根据所给条件,运用数学知识,确定等量关系; (3) 写出的解析式并指明定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如何取值时,函数存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象关于原点对称。
(1)求m的值;(2)判断上的单调性,并根据定义证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)设函数,且,求证:(1)
(2)函数在区间内至少有一个零点;
(3)设是函数的两个零点,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题14分)如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米,建立适当的直角坐标系,(1)求抛物线方程.(2)若将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的最小值为1,且
(1)求的解析式;  
(2)若在区间上不单调,求实数的取值范围;
(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求值:; (2)已知的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 定义在上,对于任意实数,恒有,且当时,
(1)求证:,且当时,
(2)求上的单调性.
(3)设集合,且
求实数的取值范围.

查看答案和解析>>

同步练习册答案