精英家教网 > 高中数学 > 题目详情

设函数 定义在上,对于任意实数,恒有,且当时,
(1)求证:,且当时,
(2)求上的单调性.
(3)设集合,且
求实数的取值范围.

(1)见解析;(2)上是减函数. (3)

解析试题分析:(1)证明:取,由已知
             -----------2分 
时,时,则

                 ----------4分
(2)任取,且.
               -----------5分

                       -----------6分
  即
上是减函数.                       -----------8分
解(3)在集合中,  
上是减函数        -------10分

,                   ---------12分
考点:抽象函数的性质及应用。
点评:不给出具体解析式,只给出函数的特殊条件或特征的函数即为抽象函数。一般的:①求抽象函数的函数值常用赋值法。②证明抽象函数的单调性常用定义法。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为(0<<1,则出厂价相应提高的比例为0.7,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(1)若年销售量增加的比例为0.4,为使本年度的年利润比上年度有所增加,则投入成本增加的比例应在什么范围内?
(2)年销售量关于的函数为,则当为何值时,本年度的年利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)定义在实数R上的函数y= f(x)是偶函数,当x≥0时,.
(Ⅰ)求f(x)在R上的表达式;
(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
提高过立交桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,成都某立交桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)建造一个容积为18立方米,深为2米的长方体有盖水池。如果池底和池壁每平方米的造价分别是200元和150元,那么如何建造,池的造价最低,为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知集合是满足下列性质的函数的全体:在定义域内存在,使得成立。
(Ⅰ)函数是否属于集合?说明理由;
(Ⅱ)设函数,求的取值范围;
(Ⅲ)设函数图象与函数的图象有交点,
证明:函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题两小题,每题6分,满分12分)
⑴对任意,试比较的大小;
⑵已知函数的定义域为R,求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数
(1)若试判断函数零点个数;
(2)若对任意的,且>0),试证明:
成立。
(3)是否存在,使同时满足以下条件:①对任意,且②对任意的,都有?若存在,求出的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科题)(本小题12分)
某房产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元。
(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?
(2)若干年后开发商为了投资其他项目,有两种处理方案①年平均利润最大时以46万元出售该楼;
②纯利润总和最大时,以10万元出售楼,问选择哪种方案盈利更多?

查看答案和解析>>

同步练习册答案