| A. | B. | C. | D. |
分析 先根据函数的奇偶性,排除AD,再根据函数的单调性排除C,问题得以解决.
解答 解:f(x)定义域为{x|x≠0},
∵f(-x)=$\frac{-x}{{e}^{-x}-1}$+$\frac{-x}{2}$=-x($\frac{{e}^{x}}{1-{e}^{x}}$+$\frac{1}{2}$)=-x(-$\frac{{e}^{x}-1+1}{{e}^{x}-1}$+$\frac{1}{2}$)=-x(-$\frac{1}{{e}^{x}-1}$-1+$\frac{1}{2}$)=$\frac{x}{{e}^{x}-1}$+$\frac{x}{2}$=f(x),
∴f(x)为偶函数,
∴函数f(x)的图象关于y轴对称,故排除A,D;
∵f′(x)=$\frac{1}{2}$•$\frac{{e}^{2x}-2x{e}^{x}-1}{({e}^{x}-1)^{2}}$,
设g(x)=e2x-2xex-1,
∴g′(x)=2ex(ex-x-1)>0,
∴g(x)>g(0)=0,
∴f′(x)>0,
∴f(x)在(0,+∞)上单调递增,排除C,
故选:B
点评 本题考查了函数的图象的性质,常用的方法是求出函数的奇偶性,函数的单调性,函数的最值,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{2}$ | C. | $\frac{7π}{6}$ | D. | $\frac{7π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 正数m的平方不等于0 | B. | 若m不是正数,则它的平方等于0 | ||
| C. | 若m不是正数,则它的平方不等于0 | D. | 非正数m的平方等于0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 15 | C. | 21 | D. | 25 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com