精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,将函数f(x)的图象向左平移m(m>0)个单位后,得到函数g(x)的图象关于点($\frac{π}{3}$,$\frac{\sqrt{3}}{2}$)对称,则m的值可能为(  )
A.$\frac{π}{6}$B.$\frac{π}{2}$C.$\frac{7π}{6}$D.$\frac{7π}{12}$

分析 由函数图象观察可得A,B,T,由周期公式可求得ω,又点($\frac{π}{6}$,$\frac{3\sqrt{3}}{2}$)在函数图象上,解得:φ=2kπ$+\frac{π}{6}$,k∈Z,又|φ|<$\frac{π}{2}$,可求得φ的值,由平移变换可得g(x),由g(x)的图象关于点($\frac{π}{3}$,$\frac{\sqrt{3}}{2}$)对称,可解得m的值,从而得解.

解答 解:∵由函数图象可得:A=$\frac{1}{2}$[$\frac{3\sqrt{3}}{2}$-(-$\frac{\sqrt{3}}{2}$)]=$\sqrt{3}$,T=2($\frac{2π}{3}-\frac{π}{6}$)=π=$\frac{2π}{ω}$,可得ω=2,B=$\frac{3\sqrt{3}}{2}-\sqrt{3}$=$\frac{\sqrt{3}}{2}$,
∵点($\frac{π}{6}$,$\frac{3\sqrt{3}}{2}$)在函数图象上,
∴$\frac{3\sqrt{3}}{2}$=$\sqrt{3}$sin(2×$\frac{π}{6}$+φ)+$\frac{\sqrt{3}}{2}$,可得:$\frac{π}{3}$+φ=2k$π+\frac{π}{2}$,k∈Z,从而解得:φ=2kπ$+\frac{π}{6}$,k∈Z
又∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$,
∴函数解析式为:f(x)=$\sqrt{3}$sin(2x+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$,
∴g(x)=f(x+m)=$\sqrt{3}$sin(2x+2m+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$,
∵g(x)的图象关于点($\frac{π}{3}$,$\frac{\sqrt{3}}{2}$)对称,
∴2×$\frac{π}{3}$+2m+$\frac{π}{6}$=kπ,k∈Z,可解得:m=$\frac{1}{2}$kπ-$\frac{5π}{12}$,k∈Z,
∴当k=2a时,m=$\frac{7π}{12}$,
故选:D.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的平移变换,正弦函数的周期性,对称性,求φ的值是解题的关键和难点,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设集合A={0,1,2},B={x∈R|x2-3x+2=0},则(  )
A.A?BB.B?AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xoy中,已知曲线C的参数方程为$\left\{\begin{array}{l}{x=cosα+1}\\{y=sinα}\end{array}\right.$(α为参数),现以O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l过点P(-3,4)
(1)若直线l在两坐标轴上的截距之和为12,求直线的方程;
(2)若直线l与x轴负半轴,y轴正半轴分别交于A、B两点,试求△AOB面积的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=4cost}\\{y=2\sqrt{3}sint}\end{array}\right.$,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为3ρcosθ+2ρsinθ=12,若直线l与曲线C交于A、B两点,M为曲线C与y轴负半轴的交点,则四边形CMAB的面积为6+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设平面区域D是不等式组$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{2x-y-3≤0}\end{array}\right.$的解集,将D绕直线x-y=0旋转一周后所得几何体的体积等于(  )
A.$\frac{4\sqrt{2}}{3}$πB.$\sqrt{2}$πC.2$\sqrt{2}$πD.3$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知全集U=R,A={x|x+2≥0},B={x|x>3},利用数轴求:
(1)A∩B和A∪B;
(2)∁U(A∩B)和A∪(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知{an}是等差数列,Sn为其前n项和,若S13=S2000,则S2013=(  )
A.-2014B.2014C.1007D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{x}{{e}^{x}-1}$+$\frac{x}{2}$的大致图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案