20£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4cost}\\{y=2\sqrt{3}sint}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ3¦Ñcos¦È+2¦Ñsin¦È=12£¬ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬MΪÇúÏßCÓëyÖḺ°ëÖáµÄ½»µã£¬ÔòËıßÐÎCMABµÄÃæ»ýΪ6+4$\sqrt{3}$£®

·ÖÎö Ê×ÏȰÑÇúÏߵIJÎÊý·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬ÔٰѼ«×ø±ê·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬½øÒ»²½Çó³ö${S}_{¡÷OAB}=\frac{1}{2}•\sqrt{13}\frac{12}{\sqrt{13}}=6$ºÍ${S}_{¡÷AOM}=\frac{1}{2}•4•2\sqrt{3}=4\sqrt{3}$£¬×îºóÇó³öËıßÐεÄÃæ»ý£®

½â´ð ½â£ºÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4cost}\\{y=2\sqrt{3}sint}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬
ת»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$£¬
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ3¦Ñcos¦È+2¦Ñsin¦È=12£¬
ת»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£º3x+2y-12=0£®
ËùÒÔ£º$\left\{\begin{array}{l}\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1\\ 3x+2y-12=0\end{array}\right.$£¬
½âµÃ£ºA£¨4£¬0£©£¬B£¨2£¬3£©£¬
ËùÒÔ£º|AB|=$\sqrt{13}$£¬
µãOµ½Ö±ÏßABµÄ¾àÀëΪ£ºd=$\frac{12}{\sqrt{13}}$£¬
ËùÒÔ£º${S}_{¡÷OAB}=\frac{1}{2}•\sqrt{13}\frac{12}{\sqrt{13}}=6$£¬
${S}_{¡÷AOM}=\frac{1}{2}•4•2\sqrt{3}=4\sqrt{3}$£¬
SËıßÐÎOMAB=S¡÷OAB+S¡÷AOM=6+4$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£º²ÎÊý·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬Á½µã¼äµÄ¾àÀ빫ʽ£¬µãµ½Ö±Ïß¾àÀ빫ʽµÄÓ¦Ó㬼°Ïà¹ØµÄÔËËãÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®º¯Êýy=sin£¨2x+$\frac{3¦Ð}{4}$£©µÄÒ»Ìõ¶Ô³ÆÖáÊÇ£¨¡¡¡¡£©
A£®x=$\frac{¦Ð}{4}$B£®x=-$\frac{¦Ð}{4}$C£®x=$\frac{¦Ð}{8}$D£®x=-$\frac{¦Ð}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µãF£¬Ïß¶ÎPQΪÅ×ÎïÏßCµÄÒ»ÌõÏÒ£®
£¨1£©ÈôÏÒPQ¹ý½¹µãF£¬ÇóÖ¤£º$\frac{1}{FP}+\frac{1}{FQ}$Ϊ¶¨Öµ£»
£¨2£©ÇóÖ¤£ºxÖáµÄÕý°ëÖáÉÏ´æÔÚ¶¨µãM£¬¶Ô¹ýµãMµÄÈÎÒâÏÒPQ£¬¶¼ÓÐ$\frac{1}{{M{P^2}}}+\frac{1}{{M{Q^2}}}$Ϊ¶¨Öµ£»
£¨3£©¶ÔÓÚ£¨2£©ÖеĵãM¼°ÏÒPQ£¬Éè$\overrightarrow{PM}=¦Ë\overrightarrow{MQ}$£¬µãNÔÚxÖáµÄ¸º°ëÖáÉÏ£¬ÇÒÂú×ã$\overrightarrow{NM}¡Í£¨{\overrightarrow{NP}-¦Ë\overrightarrow{NQ}}£©$£¬ÇóNµã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÔÚÇø¼ä£¨0£¬$\frac{¦Ð}{2}$£©ÉÏËæ»úȡһ¸öÊýx£¬Ê¹µÃ0£¼tanx£¼1³ÉÁ¢µÄ¸ÅÂʵÈÓÚ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚ¸´Æ½ÃæÄÚ£¬¸´Êýz=$\frac{3+2i}{2i-2}$£¨iΪÐéÊýµ¥Î»£©µÄ¹²éÊý¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©+B£¨A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬½«º¯Êýf£¨x£©µÄͼÏóÏò×óÆ½ÒÆm£¨m£¾0£©¸öµ¥Î»ºó£¬µÃµ½º¯Êýg£¨x£©µÄͼÏó¹ØÓڵ㣨$\frac{¦Ð}{3}$£¬$\frac{\sqrt{3}}{2}$£©¶Ô³Æ£¬ÔòmµÄÖµ¿ÉÄÜΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{2}$C£®$\frac{7¦Ð}{6}$D£®$\frac{7¦Ð}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=x2+ax-lnx£¬a¡ÊR£®
£¨1£©Èôa=0ʱ£¬Çóº¯Êýy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚ[1£¬2]ÉÏÊǼõº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èôa£¾0£¬b£¾0£¬lga+lgb=lg£¨a+b£©£¬Ôòa+bµÄ×îСֵΪ£¨¡¡¡¡£©
A£®8B£®6C£®4D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÊýÁÐ{an}£¬¶ÔÓÚÈÎÒâm£¬n¡ÊN*Âú×ãam+n=am+an£¬a4=8£¬d=a3-a2£¬ÔÚ¡÷ABCÖУ¬a¡¢b¡¢c£¬Îª¡÷ABCµÄÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß£¬ÇÒÂú×ã$\frac{sinB+sinC}{sinA}$+$\frac{cosB+cosC-d}{cosA}$=0£®
£¨1£©Ö¤Ã÷£ºAC£¬BC£¬ABÈý±ß³ÉµÈ²îÊýÁУ»
£¨2£©ÏòÁ¿$\overrightarrow{m}$=£¨sinx£¬-1£©£¬$\overrightarrow{n}$=£¨$\sqrt{3}cosx$£¬-$\frac{1}{2}$£©£¬º¯Êýf£¨x£©=|$\overrightarrow{m}$|2+$\overrightarrow{m}$•$\overrightarrow{n}$-2£®£¬½«º¯Êýf£¨x£©µÄͼÏóµÄºá×ø±êÀ©´óΪԭÀ´µÄ2±¶£¬ÔÚÏò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»£¬µÃµ½º¯Êýg£¨x£©µÄͼÏóÇÒg£¨A£©=$\frac{\sqrt{3}}{2}$£¬ÊÔÇó£¨cosB-cosC£©2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸