精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=x2+ax-lnx,a∈R.
(1)若a=0时,求函数y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在[1,2]上是减函数,求实数a的取值范围.

分析 (1)求出a=0时函数的导数,求得切线的斜率和切点,由点斜式方程即可得到切线方程;
(2)先对函数f(x)进行求导,根据函数f(x)在[1,2]上是减函数可得到其导函数在[1,2]上小于等于0应该恒成立,再结合二次函数的性质可求得a的范围.

解答 解:(1)若a=0时,f(x)=x2-lnx的导数为f′(x)=2x-$\frac{1}{x}$,
函数y=f(x)在点(1,f(1))处的切线斜率为k=2-1=1,切点为(1,1),
则有切线方程为y-1=x-1,即为x-y=0;
(2)∵函数f(x)在[1,2]内是减函数,
∴f'(x)=$\frac{2a{x}^{2}+ax-1}{x}$≤0在[1,2]上恒成立,
令h(x)=2x2+ax-1,有$\left\{\begin{array}{l}{h(1)≤0}\\{h(2)≤0}\end{array}\right.$得$\left\{\begin{array}{l}{a≤-1}\\{a≤-\frac{7}{2}}\end{array}\right.$,
∴a≤-$\frac{7}{2}$.

点评 本题主要考查导数的几何意义和函数的单调性与其导函数的正负之间的关系,当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设集合A={x|x2-2x-3<0},B={y|y=2x,x∈[0,2]},则A∩B=(  )
A.[0,2]B.(1,3)C.[1,3)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x+$\frac{y}{4}$=4,且x>0,y>0,则log${\;}_{\frac{1}{2}}$x+log${\;}_{\frac{1}{2}}$y的最小值为(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=4cost}\\{y=2\sqrt{3}sint}\end{array}\right.$,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为3ρcosθ+2ρsinθ=12,若直线l与曲线C交于A、B两点,M为曲线C与y轴负半轴的交点,则四边形CMAB的面积为6+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.极坐标系中椭圆C的方程为ρ2=$\frac{2}{co{s}^{2}θ+2si{n}^{2}θ}$,以极点为原点,极轴为x轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(1)求该椭圆的直角标方程,若椭圆上任一点坐标为P(x,y),求x+$\sqrt{2}$y的取值范围;
(2)若椭圆的两条弦AB,CD交于点Q,且直线AB与CD的倾斜角互补,求证:|QA|•|QB|=|QC|•|QD|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知全集U=R,A={x|x+2≥0},B={x|x>3},利用数轴求:
(1)A∩B和A∪B;
(2)∁U(A∩B)和A∪(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设p:x2-x-20>0,q:$\frac{{1+{x^2}}}{{\left|{x\left.{\;}\right|-2}\right.}}$<0,则p是非q的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设命题p:2x2-3x+1≤0,命题q:x2-(2a+1)x+a(a+1)≤0,若q是p的必要不充分条件,则实数a的取值范围是$[0,\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a2+b2+c2=1(a,b,c∈R),求a+b+c的最大值.

查看答案和解析>>

同步练习册答案