精英家教网 > 高中数学 > 题目详情
2.设集合A={x|x2-2x-3<0},B={y|y=2x,x∈[0,2]},则A∩B=(  )
A.[0,2]B.(1,3)C.[1,3)D.(1,4)

分析 求出A中不等式的解集确定出A,求出B中y的范围确定出B,找出A与B的交集即可.

解答 解:由A中不等式变形得:(x-3)(x+1)<0,
解得:-1<x<3,即A=(-1,3),
由B中y=2x,x∈[0,2],得到1≤y≤4,即B=[1,4],
则A∩B=[1,3),
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin(ωx-$\frac{π}{3}$)(ω>0)图象的相邻的两条对称轴之间的距离为$\frac{π}{2}$.
(Ⅰ)求函数f(x)在[0,$\frac{π}{2}$]上的值域;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1,且f(C)=0,求三边长之比a:b:c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的极坐标方程为:ρ2-2ρcosθ+4ρsinθ+1=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线 l经过点P(-1,1)且倾斜角为 $\frac{2}{3}π$
(Ⅰ)写出直线 l的参数方程和曲线C的普通方程;
(Ⅱ)设直线 l与曲线C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=sin(2x+$\frac{3π}{4}$)的一条对称轴是(  )
A.x=$\frac{π}{4}$B.x=-$\frac{π}{4}$C.x=$\frac{π}{8}$D.x=-$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,输出的S值为(  )
A.32B.50C.70D.90

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设抛物线C:x2=2py(p>0)的准线被圆O:x2+y2=4所截得的弦长为$\sqrt{15}$,
(1)求抛物线C的方程; 
(2)设点F是抛物线C的焦点,N为抛物线C上的一动点,过N作抛物线C的切线交圆O于P、Q两点,求△FPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给定函数f(x)和g(x),若存在实常数k,b,使得函数f(x)和g(x)对其公共定义域D上的任何实数x分别满足f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.给出下列四组函数:
①f(x)=$\frac{1}{2^x}$+1,g(x)=sinx;
②f(x)=x3,g(x)=-$\frac{1}{x}$;
③f(x)=x+$\frac{1}{x}$,g(x)=lgx;
④f(x)=2x-$\frac{1}{2^x},g(x)=\sqrt{x}$
其中函数f(x)和g(x)存在“隔离直线”的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0)的焦点F,线段PQ为抛物线C的一条弦.
(1)若弦PQ过焦点F,求证:$\frac{1}{FP}+\frac{1}{FQ}$为定值;
(2)求证:x轴的正半轴上存在定点M,对过点M的任意弦PQ,都有$\frac{1}{{M{P^2}}}+\frac{1}{{M{Q^2}}}$为定值;
(3)对于(2)中的点M及弦PQ,设$\overrightarrow{PM}=λ\overrightarrow{MQ}$,点N在x轴的负半轴上,且满足$\overrightarrow{NM}⊥({\overrightarrow{NP}-λ\overrightarrow{NQ}})$,求N点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2+ax-lnx,a∈R.
(1)若a=0时,求函数y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在[1,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案