精英家教网 > 高中数学 > 题目详情
4.设命题p:2x2-3x+1≤0,命题q:x2-(2a+1)x+a(a+1)≤0,若q是p的必要不充分条件,则实数a的取值范围是$[0,\frac{1}{2}]$.

分析 利用不等式的解法,利用充分条件和必要条件的定义即可得到结论.

解答 解:由2x2-3x+1≤0得$\frac{1}{2}$≤x≤1,即p:$\frac{1}{2}$≤x≤1,
由x2-(2a+1)x+a(a+1)≤0得(x-a)(x-a-1)≤0,
即a≤x≤a+1,即q:a≤x≤a+1,
若q是p的必要不充分条件,
则$\left\{\begin{array}{l}{a≤\frac{1}{2}}\\{a+1≥1}\end{array}\right.$,即$\left\{\begin{array}{l}{a≤\frac{1}{2}}\\{a≥0}\end{array}\right.$,即0≤a≤$\frac{1}{2}$,
故答案为:$[0,\frac{1}{2}]$.

点评 本题主要考查充分条件和必要条件的应用,利用不等式的解法求出不等式的解是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0)的焦点F,线段PQ为抛物线C的一条弦.
(1)若弦PQ过焦点F,求证:$\frac{1}{FP}+\frac{1}{FQ}$为定值;
(2)求证:x轴的正半轴上存在定点M,对过点M的任意弦PQ,都有$\frac{1}{{M{P^2}}}+\frac{1}{{M{Q^2}}}$为定值;
(3)对于(2)中的点M及弦PQ,设$\overrightarrow{PM}=λ\overrightarrow{MQ}$,点N在x轴的负半轴上,且满足$\overrightarrow{NM}⊥({\overrightarrow{NP}-λ\overrightarrow{NQ}})$,求N点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2+ax-lnx,a∈R.
(1)若a=0时,求函数y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在[1,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a>0,b>0,lga+lgb=lg(a+b),则a+b的最小值为(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设定义在R上的奇函数f(x)满足f(x)=x2-4(x>0),则f(x-2)>0的解集为(  )
A.(-4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(-∞,0)∪(4,+∞)D.(-4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a3=(  )
A.-10B.-6C.-8D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z=$\frac{1}{i(i+1)}$,则$\overline{z}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an},对于任意m,n∈N*满足am+n=am+an,a4=8,d=a3-a2,在△ABC中,a、b、c,为△ABC的内角A、B、C的对边,且满足$\frac{sinB+sinC}{sinA}$+$\frac{cosB+cosC-d}{cosA}$=0.
(1)证明:AC,BC,AB三边成等差数列;
(2)向量$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=($\sqrt{3}cosx$,-$\frac{1}{2}$),函数f(x)=|$\overrightarrow{m}$|2+$\overrightarrow{m}$•$\overrightarrow{n}$-2.,将函数f(x)的图象的横坐标扩大为原来的2倍,在向左平移$\frac{π}{3}$个单位,得到函数g(x)的图象且g(A)=$\frac{\sqrt{3}}{2}$,试求(cosB-cosC)2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知F为抛物线C:y2=6x的焦点,A,B是C上的两点,线段AB的中点为M(2,2),求△ABF的面积.

查看答案和解析>>

同步练习册答案