精英家教网 > 高中数学 > 题目详情
1.某车间计划全年完成产值60万元,前3个季度完成43.45万元,如果10月份的产值是5万元,那么后两个月的月平均增长率应该是多少,才能超额完成年产值计划?

分析 通过设后两个月的月平均增长率为x,进而解不等式5+5(1+x)+5(1-x)2+43.45>60即得结论.

解答 解:设后两个月的月平均增长率为x,
则5+5(1+x)+5(1-x)2+43.45>60,
整理得:x2+3x-0.31>0,
解得:x>0.1或x<-3.1(舍),
答:后两个月的月平均增长率在10%以上才能超额完成年产值计划.

点评 本题是一道关于一元二次不等式的简单应用题,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.正三棱柱被一个平面截去一部分后与半圆柱组成一个几何体,该几何体的三视图如图所示,则该几何体的表面积为(  )
A.3π+4+$\sqrt{3}$+$\sqrt{7}$B.3π+6+$\sqrt{3}$C.2π+4+$\sqrt{3}$$+\sqrt{7}$D.2π+6$+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\left\{\begin{array}{l}-2x,x≤0\\{x^2}+1,x>0\end{array}$,若f[f(a)]=0,则a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线C;$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0))的左右焦点分别为F1,F2,双曲线C上一点P到右焦点F2的距离是实轴两端点到右焦点距离的等差中项,若△PF1F2为锐角三角形,则双曲线C的离心率的取值范围是(  )
A.($\frac{1+\sqrt{5}}{2}$,+∞)B.(1,1+$\sqrt{3}$)C.($\frac{1+\sqrt{5}}{2}$,1+$\sqrt{3}$)D.($\frac{1+\sqrt{5}}{2}$,2)∪(2,1+$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,点F是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,过点F的直线的斜率为3,与双曲线交于P,Q两点,分别过P、Q向右准线作垂线,垂足分别为M,N,且$\overrightarrow{PM}$=3$\overrightarrow{QN}$,求双曲线的离心率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)化简 a${\;}^{\frac{2}{3}}$•b${\;}^{\frac{1}{2}}$•(2a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷($\frac{1}{6}$a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$); 
(2)计算 ($\sqrt{2}$-1)0+($\frac{16}{9}$)${\;}^{\frac{1}{2}}$+8${\;}^{\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(2x+1)的定义域是[-1,3],且f(x)的定义域由f(2x+1)确定,试求f(x)的定义域[-1,7].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{a}$=(5,6),$\overrightarrow{b}$=(sinα,cosα),已知向量且$\overrightarrow{a}$∥$\overrightarrow{b}$,则tanα=(  )
A.$\frac{5}{6}$B.-$\frac{5}{6}$C.$\frac{6}{5}$D.-$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.同学们经过市场调查,得出了某种商品在2014年的价格y(单位:元)与时间t(单位:月的函数关系为:y=2+$\frac{{t}^{2}}{20-t}$(1≤t≤12),则10月份该商品价格上涨的速度是3元/月.

查看答案和解析>>

同步练习册答案