10£®Ëæ×ÅÎÒ¹ú¾­¼ÃµÄ·¢Õ¹£¬¾ÓÃñµÄ´¢Ðî´æ¿îÖðÄêÔö³¤£®ÉèijµØÇø³ÇÏç¾ÓÃñÈËÃñ±Ò´¢Ðî´æ¿î£¨Äêµ×Óà¶î£©Èç±í£º
Äê·Ý20102011201220132014
ʱ¼ä´úºÅt12345
´¢Ðî´æ¿îy£¨Ç§ÒÚÔª£©567810
£¨¢ñ£©Çóy¹ØÓÚtµÄ»Ø¹é·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$t+$\stackrel{¡Ä}{a}$
£¨¢ò£©ÓÃËùÇ󻨹鷽³ÌÔ¤²â¸ÃµØÇø2015Ä꣨t=6£©µÄÈËÃñ±Ò´¢Ðî´æ¿î£®
¸½£º»Ø¹éÖ±ÏßµÄбÂʺͽؾàµÄ×îС¶þ³Ë·¨¹À¼Æ¹«Ê½·Ö±ðΪ£º$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©^{2}}$£®$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{t}$£®

·ÖÎö £¨¢ñ£©ÀûÓù«Ê½Çó³öa£¬b£¬¼´¿ÉÇóy¹ØÓÚtµÄ»Ø¹é·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$t+$\stackrel{¡Ä}{a}$£»
£¨¢ò£©t=6£¬´úÈë»Ø¹é·½³Ì£¬¼´¿ÉÔ¤²â¸ÃµØÇø2015ÄêµÄÈËÃñ±Ò´¢Ðî´æ¿î£®

½â´ð ½â£º£¨¢ñ£©
ÓÉͼ±íÇóµÃ£º$\overline{t}$=3£¬$\overline{y}$=7.2£¬
$\sum_{i=1}^{5}{{t}_{i}}^{2}-5{\overline{t}}^{2}$=55-5¡Á32=10£¬$\sum_{i=1}^{5}{t}_{i}{y}_{i}-5\overline{t}\overline{y}$=120-5¡Á3¡Á7.2=12£¬
¡à$\widehat{b}$=1.2£¬$\widehat{a}$=7.2-1.2¡Á3=3.6£¬
¡ày¹ØÓÚtµÄ»Ø¹é·½³Ì$\widehat{y}$=1.2t+3.6£®
£¨¢ò£©t=6ʱ£¬$\widehat{y}$=1.2¡Á6+3.6=10.8£¨Ç§ÒÚÔª£©£®

µãÆÀ ±¾Ì⿼²éÏßÐԻع鷽³Ì£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒµ±x¡Ü0ʱ£¬f£¨x£©=2x+1+l£®
£¨1£©Çóf£¨1£©µÄ½âÎöʽ£»
£¨2£©ÔÚËù¸øµÄ×ø±êϵÄÚ»­³öº¯Êýf£¨x£©µÄ²Ýͼ£¬²¢Çó·½³Ì2f£¨x£©-m-l=0Ç¡ÓÐÁ½¸ö²»Í¬Êµ¸ùʱʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®É趨ÒåÔÚRÉϵĺ¯Êýy=f£¨x£©Âú×ãf£¨x£©•f£¨x+2£©=12£¬ÇÒf£¨2017£©=2£¬Ôòf£¨3£©=£¨¡¡¡¡£©
A£®12B£®6C£®3D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªg¡ä£¨x£©ÊǺ¯Êýg£¨x£©ÔÚRÉϵĵ¼Êý£¬¶Ô?x¡ÊR£¬¶¼ÓÐg£¨-x£©=x2-g£¨x£©£¬ÔÚ£¨-¡Þ£¬0£©ÉÏ£¬g¡ä£¨x£©£¾x£¬Èôg£¨3-t£©-g£¨t-1£©-4+2t¡Ü0£¬ÔòʵÊýtµÄȡֵ·¶Î§Îªt¡Ý2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÉèDΪ¡÷ABCËùÔÚÆ½ÃæÄÚÒ»µã£¬$\overrightarrow{BC}$=3$\overrightarrow{CD}$£¬$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$£¬Ôòn-m=$\frac{5}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èôx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x¡Ý0}\\{x+2y¡Ý3}\\{2x+y¡Ü3}\end{array}\right.$£¬Ôò$\frac{y}{x}$µÄȡֵ·¶Î§Îª[1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÅ×ÎïÏß$\left\{{\begin{array}{l}{x=4{t^2}}\\{y=4t}\end{array}}\right.$£¨tΪ²ÎÊý£©µÄ½¹µãΪF£¬ÔòµãM£¨3£¬m£©µ½FµÄ¾àÀë|MF|Ϊ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=$\frac{3}{2}{x^2}$+2ax+lnx£¬a¡ÊR
£¨1£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚ$£¨\frac{1}{3}£¬\frac{2}{3}£©$ÄÚµ¥µ÷µÝ¼õ£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¶ÔÓÚ¸ø¶¨ÊýÁÐ{xn}£¬Èô´æÔÚÒ»¸ö³£Êýk¡ÊN*£¬¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬Ê¹µÃxn+k=xn³ÉÁ¢£¬Ôò³ÆÊýÁÐ{xn}ÊÇÖÜÆÚÊýÁУ¬kÊÇÊýÁÐ{xn}µÄÒ»¸öÖÜÆÚ£¬ÈôkÊÇÊýÁÐ{xn}µÄÖÜÆÚ£¬ÇÒ1£¬2£¬¡­£¬k-1¾ù²»ÊÇÊýÁÐ{xn}µÄÖÜÆÚ£¬Ôò³ÆkΪÊýÁÐ{xn}µÄ×îСÖÜÆÚ£®ÒÑÖªÊýÁÐ{an}µÄ×îСÖÜÆÚΪ4£¬Ç°nÏîºÍΪSn£¬ÇÒ4Sn=£¨an+1£©2£®
£¨1£©Çóa1µÄÖµ£»
£¨2£©ÇóÊýÁÐ{an}ͨÏʽanºÍǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸