【题目】已知曲线上动点与定点的距离和它到定直线的距离的比是常数,若过的动直线与曲线相交于两点
(1)说明曲线的形状,并写出其标准方程;
(2)是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由
【答案】(1)曲线是椭圆,它的标准方程为;(2)存在点满足题意
【解析】
(1)先设动点坐标为,根据题意列出等式,化简整理即可求出结果;
(2)分情况讨论如下:当直线与轴垂直时,易得点必在轴上.;当直线与轴垂直时,易得点的坐标只可能是;再证明直线斜率存在且时均有即可.
(1)设动点坐标为
点到直线的距离为.依题意可知
则
化简得
所以曲线是椭圆,它的标准方程为
(2)①当直线与轴垂直时,由椭圆的对称性可知,又因为,则
从而点必在轴上.
②当直线与轴垂直时,则,由①可设,
由得,解得(舍去),或.
则点的坐标只可能是.
下面只需证明直线斜率存在且时均有即可.
设直线的方程为,代入得.
设
所以
设点关于轴对称的点坐标
因为直线的斜率
同理得直线的斜率
,三点共线.
故.
所以存在点满足题意.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系O中,直线与抛物线=2相交于A、B两点.
(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax-3lnx(a为常数)与函数g(x)=-xlnx在x=1处的切线互相平行.
(1)求a的值;
(2)求函数y=f(x)在[1,2]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人有楼房一幢,室内总面积为,拟分割成两类房间作为旅游客房,有关的数据如下表:
大房间 | 小房间 | |
每间的面积 | ||
每间装修费 | 元 | 6000元 |
每天每间住人数 | 5人 | 3人 |
每天每人住宿费 | 80元 | 100元 |
如果他只能筹款80000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得的住宿总收入最多?每天获得的住宿总收入最多是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中的真命题是( )
A. 若,则向量与的夹角为钝角
B. 若,则
C. 若命题“是真命题”,则命题“是真命题”
D. 命题“,”的否定是“,”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关……”其大意为:“某人从距离关口三百七十八里处出发,第一天走得轻快有力,从第二天起,由于脚痛,每天走的路程为前一天的一半,共走了六天到达关口……” 那么该人第一天走的路程为______________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,离心率为,过右焦点作直线交椭圆于,两点,的周长为,点.
(1)求椭圆的方程;
(2)设直线、的斜率,,请问是否为定值?若是定值,求出其定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)当时,求函数在点处的切线方程;
(2)若函数的图象与轴交于两点,且,求的取值范围;
(3)在(2)的条件下,证明:为函数的导函数).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com