【题目】已知椭圆
的左、右焦点分别为
,
,离心率为
,过右焦点
作直线
交椭圆
于
,
两点,
的周长为
,点
.
(1)求椭圆
的方程;
(2)设直线
、
的斜率
,
,请问
是否为定值?若是定值,求出其定值;若不是,说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图象是由函数
的图象经如下变换得到:先将g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移
个单位长度.
(1)求函数f(x)的解析式,并求其图象的对称轴方程;
(2)已知关于x的方程f(x)+g(x)=m在
内有两个不同的解
.
①求实数m的取值范围;
②证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
![]()
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2
,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱
中,(底面为正三角形,侧棱垂直于底面),侧棱长
,底面边长
,
是
的中点.
![]()
(1)求证:平面
平面
;
(2)设
是线段
的中点,求直线
与平面
所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学文化的优秀遗产,数学家刘徽在注解《九章算术》时,发现当圆内接正多边行的边数无限增加时,多边形的面积可无限逼近圆的面积,为此他创立了割圆术,利用割圆术,刘徽得到了圆周率精确到小数点后四位3.1416,后人称3.14为徽率,如图是利用刘徽的割圆术设计的程序框图,若结束程序时,则输出的
为( )(
,
,
)
![]()
A. 6 B. 12 C. 24 D. 48
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com