精英家教网 > 高中数学 > 题目详情

【题目】如图,正三棱柱中,(底面为正三角形,侧棱垂直于底面),侧棱长,底面边长的中点.

(1)求证:平面平面

(2)设是线段的中点,求直线与平面所成的角的正弦值.

【答案】(1) 见解析(2)

【解析】

(1)通过做平行线构造平行四边形,进而得到线面垂直,再由平形四边行的对边平行的性质得到平面内的线垂直于平面内的线,进而得到面面垂直;(2)建立空间坐标系,求直线的方向向量和面的法向量,进而得到线面角.

(1)证明:取中点的中点为M,连结,MN,则有= ∴四边形为平行四边形,

,

,又

平面⊥平面.

所以平面平面

(2)如图建立空间直角坐标系,则B(-,0,0),A(,0,0),

因为是线段的中点,所以M

所以

是平面的一个法向量,因为

所以,由

所以可取

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两焦点分别为,其短半轴长为.

(1)求椭圆的方程;

(2)设不经过点的直线与椭圆相交于两点.若直线的斜率之和为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=4x与椭圆E1ab0)有一个公共焦点F.设抛物线C与椭圆E在第一象限的交点为M.满足|MF|.

1)求椭圆E的标准方程;

2)过点P1)的直线交抛物线CAB两点,直线PO交椭圆E于另一点Q.PAB的中点,求△QAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,过右焦点作直线交椭圆两点,的周长为,点.

1)求椭圆的方程;

2)设直线的斜率,请问是否为定值?若是定值,求出其定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,平面为棱的中点

1)证明:

2)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.

1)计算甲班的样本方差;

2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,

已知圆和圆.

1)若直线过点,且被圆截得的弦长为

求直线的方程;(2)设P为平面上的点,满足:

存在过点P的无穷多对互相垂直的直线

它们分别与圆和圆相交,且直线被圆

截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为3的正的各边三等分,过每个分点分别作另外两边的平行线,称的边及这些平行线所交的10个点为格点.若在这10个格点中任取个格点,一定存在三个格点能构成一个等腰三角形(包括正三角形).的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年消毒液和口罩成了抢手年货,老百姓几乎人人都需要,但对于这种口罩,大多数人不是很了解.现随机抽取40人进行调查,其中45岁以下的有20人,在接受调查的40人中,对于这种口罩了解的占,其中45岁以上(含45岁)的人数占.

1)将答题卡上的列联表补充完整;

2)判断是否有的把握认为对这种口罩的了解与否与年龄有关.

参考公式:,其中.

参考数据:

查看答案和解析>>

同步练习册答案