| A. | ($\frac{3}{4e}$,1) | B. | ($\frac{3}{2e}$,1) | C. | [$\frac{3}{2e}$,1) | D. | ($\frac{3}{2e}$,1] |
分析 设g(x)=ex(2x-1),y=ax-a,由题意知,存在唯一的整数x0,使g(x0)在直线y=ax-a的下方,利用导数研究函数g(x)的单调性,又直线y=ax-a恒过点(1,0),且斜率为a,结合图象可知,a≤$\frac{0-(-1)}{1-0}$=1,且a>$\frac{{e}^{-1}(-2-1)-0}{-1-1}$=$\frac{3}{2e}$.即可得出.
解答 解:设g(x)=ex(2x-1),y=ax-a,![]()
由题意知,存在唯一的整数x0,使g(x0)在直线y=ax-a的下方,
∵g′(x)=ex(2x+1),
∴当x<-$\frac{1}{2}$时,g′(x)<0,当x>-$\frac{1}{2}$时,g′(x)>0,
∴gmin(x)=g(-$\frac{1}{2}$)=-2${e}^{-\frac{1}{2}}$;
且g(0)=-1,g(1)=3e>0,
直线y=ax-a恒过点(1,0),且斜率为a,
结合图象可知,
a≤$\frac{0-(-1)}{1-0}$=1,且a>$\frac{{e}^{-1}(-2-1)-0}{-1-1}$=$\frac{3}{2e}$.
解得,$\frac{3}{2e}$<a≤1.
故选:D.
点评 本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | (-6,4) | B. | [4,6) | C. | (5,6)∪{4} | D. | [5,6)∪{4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 公园 | 甲 | 乙 | 丙 | 丁 |
| 获得签名人数 | 45 | 60 | 30 | 15 |
| 有兴趣 | 无兴趣 | 合计 | |
| 男 | 25 | 5 | 30 |
| 女 | 15 | 15 | 30 |
| 合计 | 40 | 20 | 60 |
| P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com