精英家教网 > 高中数学 > 题目详情
11.已知函数$f(x)=\left\{\begin{array}{l}\frac{2}{x},x>1\\ 9x{({1-x})^2},x≤1\end{array}\right.$,若函数g(x)=f(x)-k仅有一个零点,则k的取值范围是(  )
A.$({\frac{4}{3},2}]$B.$({-∞,0})∪({\frac{4}{3},+∞})$C.(-∞,0)D.$({-∞,0})∪({\frac{4}{3},2})$

分析 转化函数的零点为方程的根,利用数形结合求解即可.

解答 解:函数$f(x)=\left\{\begin{array}{l}\frac{2}{x},x>1\\ 9x{({1-x})^2},x≤1\end{array}\right.$,若函数g(x)=f(x)-k仅有一个零点,
即f(x)=k,只有一个解,在平面直角坐标系中画出,y=f(x)的图象,
结合函数图象可知,方程只有一个解时,k∈(-∞,0)∪($\frac{4}{3}$,2),答案为D,
故选:D.

点评 本题考查分段函数的应用,函数的图象以及函数的零点的关系,考查转化思想以及数形结合的应用.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北省高二8月月考数学试卷(解析版) 题型:解答题

已知圆轴相切,圆心在直线上,且被直线截得的弦长为,求圆的方程

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北省高二8月月考数学试卷(解析版) 题型:选择题

若三个平面两两相交,有三条交线,则下列命题中正确的是( )

A.三条交线为异面直线

B.三条交线两两平行

C.三条交线交于一点

D.三条交线两两平行或交于一点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.有一名同学家开了一个小卖部,他为了研究气温对某种引领销售的影响,记录了2015年7月至12月每月15号下午14时的气温和当天卖出的饮料杯数,得到如下资料:
日期7月15日8月15日9月15日10月15日11月15日12月15日
摄氏温度x(℃)36353024188
饮料杯数y27292418155
该同学确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选中的2组数据进行检验.
(1)求选取2组数据恰好是相邻的两个月的概率;
(2)若选中的是8月与12月的两组数据,根据剩下的4组数据,求出y关于x的线性回归方程$\hat y=bx+\hat a$.
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线$\hat a=\overline y-\hat b\overline x$的斜率和截距的最小二乘估计分别为:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=$\left\{\begin{array}{l}{1+lg(2-x),(x<1)}\\{1{0}^{(x-1)},(x≥1)}\end{array}\right.$,则f(-8)+f(lg40)=(  )
A.5B.6C.9D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≥1}\\{1,x<1}\end{array}\right.$,则不等式f(6-x2)>f(x)的解集为(  )
A.(-3,1)B.(-2,1)C.(-$\sqrt{5}$,2)D.(-2,$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一般来说,一个人脚掌越长,他的身高越高,现对10名成年人的脚掌长x与身高y进行测量,得到数据(单位均为cm)作为一个样本如下表所示:
脚掌长(x)
 
20212223242526272829
身高(y)141146154160169176181188197203
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现三点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+a
(2)若某人的脚掌长为26cm,试估计此人的升高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人在190cm以上的概率. 
参考数据:$\sum_{i=1}^{10}$(xi-$\overline{x}$)(yi-$\overline{y}$)=577.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)2=82.5)
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\overline{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{1}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=2$\sqrt{3}$,AB=AD=2,点F是PB的中点,点E在边BC上移动.
(Ⅰ)试问当点E在BC的何处时,有EF∥平面PAC;
(Ⅱ)设二面角E-AF-B为30°,求三棱锥A-EBF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P(3,1)、Q(4,-6)在直线3x-2y+a=0的两侧,则a的取值范围是(  )
A.(-24,7)B.(7,24)C.(-7,24)D.(-24,-7)

查看答案和解析>>

同步练习册答案