精英家教网 > 高中数学 > 题目详情
20.已知点P(3,1)、Q(4,-6)在直线3x-2y+a=0的两侧,则a的取值范围是(  )
A.(-24,7)B.(7,24)C.(-7,24)D.(-24,-7)

分析 根据点(3,1)和(4,-6)在直线3x-2y+a=0的两侧,我们将两点坐标代入直线方程所得符号相反,则我们可以构造一个关于a的不等式,解不等式即可得到答案.

解答 解:若点A(3,1)和点B(4,-6)分别在直线3x-2y+a=0两侧,
则(3×3-2×1+a)×(3×4+2×6+a)<0,
即(a+7)(a+24)<0,
解得-24<a<-7,
故选:D.

点评 本题考查的知识点是二元一次不等式与平面区域,根据A、B在直线两侧,则A、B坐标代入直线方程所得符号相反构造不等式是解答本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=\left\{\begin{array}{l}\frac{2}{x},x>1\\ 9x{({1-x})^2},x≤1\end{array}\right.$,若函数g(x)=f(x)-k仅有一个零点,则k的取值范围是(  )
A.$({\frac{4}{3},2}]$B.$({-∞,0})∪({\frac{4}{3},+∞})$C.(-∞,0)D.$({-∞,0})∪({\frac{4}{3},2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,收集数据如表所示:
零件数x(个)2345
加工时间y(min)26394954
根据表可得回归方程$\hat y=\hat bx+\hat a$中的$\hat b$为9.4,据此可估计加工零件数为6时加工时间大约为(  )
A.63.6minB.65.5minC.67.7minD.72.0min

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的前n项和是${S_n}={n^2}+n$,则数a4=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=(x+a)lnx,g(x)=$\frac{2{x}^{2}}{{e}^{x}}$.已知曲线f(x)在点(1,f(1))处的切线过点(2,3)
(1)求实数a的值;
(2)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k,如果不存在,请说明理由;
(3)设函数m(x)=min{f(x),g(x)}(min(p,q)表示p,q中的较小值),求m(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:m2-4m+3<0;命题q:5-2m>1,若命题“p或q”为真,“非p”为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数在其定义域内既是奇函数又是增函数的是(  )
A.y=2-xB.y=x3+xC.y=-$\frac{1}{x}$D.y=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=sin(2x-$\frac{π}{2}$)的图象向右平移$\frac{π}{4}$个单位后得到函数g(x),则g(x)具有性质(  )
A.最大值为1,图象关于直线x=$\frac{π}{2}$对称B.在(0,$\frac{π}{4}$)上单调递减,为奇函数
C.在(-$\frac{3π}{8}$,$\frac{π}{8}$)上单调递增,为偶函数D.周期为π,图象关于点($\frac{3π}{8}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“lnx<0”是“x<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案