精英家教网 > 高中数学 > 题目详情
11.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,收集数据如表所示:
零件数x(个)2345
加工时间y(min)26394954
根据表可得回归方程$\hat y=\hat bx+\hat a$中的$\hat b$为9.4,据此可估计加工零件数为6时加工时间大约为(  )
A.63.6minB.65.5minC.67.7minD.72.0min

分析 求出样本的中心点($\overline{x}$,$\overline{y}$),把$\overline{x}$、$\overline{y}$代入回归直线方程$\hat y=\hat bx+\hat a$中,求出回归方程,利用回归方程求出x=6时$\stackrel{∧}{y}$的值.

解答 解:由表中数据得:$\overline{x}$=$\frac{1}{4}$×(2+3+4+5)=3.5,
$\overline{y}$=$\frac{1}{4}$×(26+39+49+54)=42,
将$\overline{x}$=3.5,$\overline{y}$=42代入回归直线方程$\hat y=\hat bx+\hat a$中,
得$\stackrel{∧}{a}$=42-9.4×3.5=9.1;
所以$\stackrel{∧}{y}$=9.4x+9.1;
所以当x=6时,$\stackrel{∧}{y}$=9.4×6+9.1=65.5(min).
故选:B.

点评 本题考查了回归直线方程的应用问题,利用回归直线方程恒过样本中心点是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北省高二8月月考数学试卷(解析版) 题型:选择题

若三个平面两两相交,有三条交线,则下列命题中正确的是( )

A.三条交线为异面直线

B.三条交线两两平行

C.三条交线交于一点

D.三条交线两两平行或交于一点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一般来说,一个人脚掌越长,他的身高越高,现对10名成年人的脚掌长x与身高y进行测量,得到数据(单位均为cm)作为一个样本如下表所示:
脚掌长(x)
 
20212223242526272829
身高(y)141146154160169176181188197203
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现三点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+a
(2)若某人的脚掌长为26cm,试估计此人的升高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人在190cm以上的概率. 
参考数据:$\sum_{i=1}^{10}$(xi-$\overline{x}$)(yi-$\overline{y}$)=577.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)2=82.5)
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\overline{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{1}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=2$\sqrt{3}$,AB=AD=2,点F是PB的中点,点E在边BC上移动.
(Ⅰ)试问当点E在BC的何处时,有EF∥平面PAC;
(Ⅱ)设二面角E-AF-B为30°,求三棱锥A-EBF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数z=$\frac{1-3i}{i-1}$在复平面上所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=(x-a)2lnx,a∈R.
(I)若x=e是y=f(x)的极值点,求实数a的值;
(Ⅱ)若函数y=f(x)-4e2只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,茎叶图记录了甲、乙两组各四名同学完成某道数学题的得分情况,该题满分为12分.已知甲、乙两组的平均成绩相同,乙组某个数据的个位数模糊,记为x.
(Ⅰ)求x的值,并判断哪组学生成绩更稳定;
(Ⅱ)在甲、乙两组中各抽出一名同学,求这两名同学的得分之和低于20分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P(3,1)、Q(4,-6)在直线3x-2y+a=0的两侧,则a的取值范围是(  )
A.(-24,7)B.(7,24)C.(-7,24)D.(-24,-7)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知A是常数,如果函数f(x)满足以下条件:①在定义域D内是单凋函数;②存在区间[m,n]⊆D,使得{y|y=f(x),m≤x≤n}=[An+3,Am+3],则称f(x)为“反A倍增三函数”.若f(x)=$\sqrt{16-x}$-x是“反A倍增三函数”,那么A的取值范围是{A|A≠-1}.

查看答案和解析>>

同步练习册答案