精英家教网 > 高中数学 > 题目详情
12.下列函数在其定义域内既是奇函数又是增函数的是(  )
A.y=2-xB.y=x3+xC.y=-$\frac{1}{x}$D.y=lnx

分析 根据奇函数图象关于原点对称,一次函数和y=x3在R上的单调性,反比例函数在定义域上的单调性,以及指数函数和对数函数的图象便可判断每个选项的正误,从而找出正确选项.

解答 解:A.y=2-x的图象不关于原点对称,不是奇函数,∴该选项错误;
B.y=x3+x的定义域为R,且(-x)3+(-x)=-(x3+x);
∴该函数为定义域R上的奇函数;
y=x3和y=x在R上都是增函数,∴y=x3+x在R上为增函数,∴该选项正确;
C.反比例函数$y=-\frac{1}{x}$在定义域上没有单调性,∴该选项错误;
D.y=lnx的图象不关于原点对称,不是奇函数,∴该选项错误.
故选:B.

点评 考查奇函数图象的对称性,y=x3和y=x在R上的单调性,以及反比例函数在定义域上的单调性,要熟悉指数函数和对数函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.一般来说,一个人脚掌越长,他的身高越高,现对10名成年人的脚掌长x与身高y进行测量,得到数据(单位均为cm)作为一个样本如下表所示:
脚掌长(x)
 
20212223242526272829
身高(y)141146154160169176181188197203
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现三点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+a
(2)若某人的脚掌长为26cm,试估计此人的升高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人在190cm以上的概率. 
参考数据:$\sum_{i=1}^{10}$(xi-$\overline{x}$)(yi-$\overline{y}$)=577.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)2=82.5)
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\overline{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{1}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,茎叶图记录了甲、乙两组各四名同学完成某道数学题的得分情况,该题满分为12分.已知甲、乙两组的平均成绩相同,乙组某个数据的个位数模糊,记为x.
(Ⅰ)求x的值,并判断哪组学生成绩更稳定;
(Ⅱ)在甲、乙两组中各抽出一名同学,求这两名同学的得分之和低于20分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P(3,1)、Q(4,-6)在直线3x-2y+a=0的两侧,则a的取值范围是(  )
A.(-24,7)B.(7,24)C.(-7,24)D.(-24,-7)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不论k为何实数,直线(2k-1)x-(k+3)y-(k-11)=0恒通过一个定点,这个定点的坐标是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设集合{$\frac{3}{a}$+b|1≤a≤b≤2}中的最大和最小元素分别是M、m,则M=5,m=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.平面内满足约束条件$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤8}\end{array}\right.$的点(x,y)形成的区域为M,区域M关于直线2x+y=0的对称区域为M′,则区域M和区域M′内最近的两点的距离为(  )
A.$\frac{3\sqrt{3}}{5}$B.$\frac{4\sqrt{5}}{5}$C.$\frac{5\sqrt{5}}{5}$D.$\frac{6\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知A是常数,如果函数f(x)满足以下条件:①在定义域D内是单凋函数;②存在区间[m,n]⊆D,使得{y|y=f(x),m≤x≤n}=[An+3,Am+3],则称f(x)为“反A倍增三函数”.若f(x)=$\sqrt{16-x}$-x是“反A倍增三函数”,那么A的取值范围是{A|A≠-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某环保节能设备生产企业的产品供不应求,已知某种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=150-$\frac{3}{2}$x,每套的售价不低于90万元;月产量x(套)与生产总成本y2(万元)之间满足关系式y2=600+72x,则月生产多少套时,每套设备的平均利润最大?最大平均利润是多少?

查看答案和解析>>

同步练习册答案