精英家教网 > 高中数学 > 题目详情
4.平面内满足约束条件$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤8}\end{array}\right.$的点(x,y)形成的区域为M,区域M关于直线2x+y=0的对称区域为M′,则区域M和区域M′内最近的两点的距离为(  )
A.$\frac{3\sqrt{3}}{5}$B.$\frac{4\sqrt{5}}{5}$C.$\frac{5\sqrt{5}}{5}$D.$\frac{6\sqrt{5}}{5}$

分析 由约束条件作出可行域M,求出可行域M内到直线2x+y=0距离最近的点A的坐标,利用点到直线的距离公式求得A到直线2x+y=0的距离,则答案可求.

解答 解:由约束条件$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤8}\end{array}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{y=1}\\{y=2x-1}\end{array}\right.$,解得A(1,1),
由图可知,可行域M内A点到直线2x+y=0的距离最小,为$\frac{|3|}{\sqrt{5}}=\frac{3\sqrt{5}}{5}$,
∴区域M和区域M′内最近的两点的距离为$\frac{6\sqrt{5}}{5}$.
故选:D.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知α∈(-π,-$\frac{π}{4}$),且sinα=-$\frac{1}{3}$,则cosα等于(  )
A.-$\frac{2\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.±$\frac{2\sqrt{2}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=(x+a)lnx,g(x)=$\frac{2{x}^{2}}{{e}^{x}}$.已知曲线f(x)在点(1,f(1))处的切线过点(2,3)
(1)求实数a的值;
(2)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k,如果不存在,请说明理由;
(3)设函数m(x)=min{f(x),g(x)}(min(p,q)表示p,q中的较小值),求m(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数在其定义域内既是奇函数又是增函数的是(  )
A.y=2-xB.y=x3+xC.y=-$\frac{1}{x}$D.y=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某农业科研实验室,对春季昼夜温差大小与某蔬菜种子发芽多少之间的关系进行研究,分别记录了3月1日至3月6日的每天昼夜温差与实验室每天每100粒种子浸泡后的发芽数,得到如表数据:
日期3月1日3月2日3月3日3月4日3月5日3月6日
昼夜温差(℃)9111312810
发芽数(粒)232530261624
(1)求此种蔬菜种子在这6天的平均发芽率;
(2)从3月1日至3月6日这六天中,按照日期从前往后的顺序任选2天记录发芽的种子数分别为m,n,用(m,n)的形式列出所有基本事件,并求满足$\left\{\begin{array}{l}{25≤m≤30}\\{25≤n≤30}\end{array}\right.$的事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=sin(2x-$\frac{π}{2}$)的图象向右平移$\frac{π}{4}$个单位后得到函数g(x),则g(x)具有性质(  )
A.最大值为1,图象关于直线x=$\frac{π}{2}$对称B.在(0,$\frac{π}{4}$)上单调递减,为奇函数
C.在(-$\frac{3π}{8}$,$\frac{π}{8}$)上单调递增,为偶函数D.周期为π,图象关于点($\frac{3π}{8}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知不等式组$\left\{\begin{array}{l}{x+y≤2}\\{x≥0}\\{y≥m}\\{\;}\end{array}\right.$表示的平面区域的面积为2,则$\frac{2x+y+3}{x+1}$的最小值为$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.4sin80°-$\frac{cos10°}{sin10°}$等于(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.2D.2$\sqrt{2}$-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(cosx+sinx,2cosx)$\overrightarrow{n}$=(cosx-sinx,-sinx).
(I)求f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$的对称中心;
(II)将函数y=f(x)的图象向右平移$\frac{π}{8}$个单位,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若α为锐角,且g(α$+\frac{π}{6}$)=$\frac{4\sqrt{2}}{5}$,求sin(α+$\frac{π}{3}$)的值.

查看答案和解析>>

同步练习册答案