精英家教网 > 高中数学 > 题目详情
17.设集合{$\frac{3}{a}$+b|1≤a≤b≤2}中的最大和最小元素分别是M、m,则M=5,m=2$\sqrt{3}$.

分析 根据级别不等式的性质求出最小值,a取最小值1,b取最大值2时,求出最大值M.

解答 解:$\frac{3}{a}$+b≥$\frac{3}{a}$+a≥2$\sqrt{3}$,故m=2$\sqrt{3}$,
a=1,b=2时$\frac{3}{a}$+b=5,故M=5,
故答案为:$5,2\sqrt{3}$.

点评 本题考查了集合问题,考查级别不等式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数y=f(x)+x3为偶函数,且f(10)=10,若函数g(x)=f(x)+6,则g(-10)=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的前n项和是${S_n}={n^2}+n$,则数a4=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:m2-4m+3<0;命题q:5-2m>1,若命题“p或q”为真,“非p”为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数在其定义域内既是奇函数又是增函数的是(  )
A.y=2-xB.y=x3+xC.y=-$\frac{1}{x}$D.y=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则符合条件$|\begin{array}{l}{z}&{1+i}\\{2}&{1}\end{array}|$=0的复数z对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=sin(2x-$\frac{π}{2}$)的图象向右平移$\frac{π}{4}$个单位后得到函数g(x),则g(x)具有性质(  )
A.最大值为1,图象关于直线x=$\frac{π}{2}$对称B.在(0,$\frac{π}{4}$)上单调递减,为奇函数
C.在(-$\frac{3π}{8}$,$\frac{π}{8}$)上单调递增,为偶函数D.周期为π,图象关于点($\frac{3π}{8}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了安全起见,高速公路同一车道上行驶的前后两辆汽车之间的距离不得小于kx2(单位:m)其中x(单位:km/h)是车速,k为比例系数,经测定,当车速为60km/h时,安全车距为40m,假设每辆车的平均车长为5m.
(1)写出在安全许可的情况下,某路口同一车道的车流量y(单位:辆/min)关于车速x的函数;
(2)如果只考虑车流量,规定怎样的车速可以使得高速公路上的车流量最大?这种规定可行吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.将某校高三年级300名学生的毕业会考数学成绩进行整理后,分成五组,第-组[75,80),第二组[80,85),第三组[86,90),第四组[90,95),第五组[95,100],如图为频率分布直方图的一部分.
(1)请在图中补全频率分布直方图并估算这300名学生数学成绩的中位数;
(2)若M大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试,在这6名学生中随机抽取2名学生接受考官B的面试,求第4组中至少有1名学生被考官B面试的概率.

查看答案和解析>>

同步练习册答案