精英家教网 > 高中数学 > 题目详情
19.某环保节能设备生产企业的产品供不应求,已知某种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=150-$\frac{3}{2}$x,每套的售价不低于90万元;月产量x(套)与生产总成本y2(万元)之间满足关系式y2=600+72x,则月生产多少套时,每套设备的平均利润最大?最大平均利润是多少?

分析 列出函数关系式,利用基本不等式判断求解,注意定义域的求解.

解答 解:根据题意得出:y总利润=x(150-$\frac{3x}{2}$)-(600-72x)=$-\frac{3}{2}$x2-600+78x,
150$-\frac{3x}{2}$≥90,0<x≤40,
y平均利润=$-\frac{3x}{2}$$-\frac{600}{x}$+78,
∵$\frac{3x}{2}$$+\frac{600}{x}$≥2$\sqrt{900}$=60,(x=20时等号成立)
∴最大平均利润是-60+78=18(万元)
∴月生产20套时,每套设备的平均利润最大,最大平均利润是18万元

点评 本题考查了函数在解决最值问题中的应用,关键列出函数关系式,根据式子得出解决方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列函数在其定义域内既是奇函数又是增函数的是(  )
A.y=2-xB.y=x3+xC.y=-$\frac{1}{x}$D.y=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.4sin80°-$\frac{cos10°}{sin10°}$等于(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.2D.2$\sqrt{2}$-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“lnx<0”是“x<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{x≤2}\\{\;}\end{array}\right.$,则目标函数z=mx+y(m∈[-1,1])的最大值和最小值的差等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.将某校高三年级300名学生的毕业会考数学成绩进行整理后,分成五组,第-组[75,80),第二组[80,85),第三组[86,90),第四组[90,95),第五组[95,100],如图为频率分布直方图的一部分.
(1)请在图中补全频率分布直方图并估算这300名学生数学成绩的中位数;
(2)若M大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试,在这6名学生中随机抽取2名学生接受考官B的面试,求第4组中至少有1名学生被考官B面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(cosx+sinx,2cosx)$\overrightarrow{n}$=(cosx-sinx,-sinx).
(I)求f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$的对称中心;
(II)将函数y=f(x)的图象向右平移$\frac{π}{8}$个单位,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若α为锐角,且g(α$+\frac{π}{6}$)=$\frac{4\sqrt{2}}{5}$,求sin(α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知动点P与双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为-$\frac{1}{9}$.
(1)求动点P的轨迹方程;
(2)若已知D(0,3),M,N在动点P的轨迹上,且$\overrightarrow{DM}$=$λ\overrightarrow{DN}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设等比数列{an}的公比q<1,前n项和为Sn,且α3=2,S4=5S2,则Sn=$\frac{1-(-2)^{n}}{6}$.

查看答案和解析>>

同步练习册答案