精英家教网 > 高中数学 > 题目详情
已知角α的终边经过点P(-1,3),则sinα-2cosα=(  )
A、
10
2
B、
10
10
C、-
7
10
2
D、-
10
2
考点:任意角的三角函数的定义
专题:三角函数的求值
分析:直接利用三角函数的定义,求出角的正弦函数、余弦函数值,即可得到结果.
解答: 解:角α的终边经过点P(-1,3),
x=-1,y=3,r=
10

sinα=
y
r
=
3
10
10
,cosα=
-
10
10

sinα-2cosα=
10
2

故选:A.
点评:本题考查三角函数的定义,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

|log2
3
8
|+|log2
3
2
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.
(Ⅰ)证明AB⊥平面VAD.
(Ⅱ)求面VAD与面VDB所成的二面角余弦值大小
(Ⅲ)若M是AB的中点,在线段VC上是否在一点N,使MN∥平面VAD.若存在,求出M点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是△ABC中∠A,∠B,∠C所对的边,如果a=
2
,b=
3
,∠B=60°,那么∠A等于(  )
A、135°B、45°
C、135°或45°D、60°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={1,3,5},则P的子集共有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆x2+4y2=36的弦被(4,2)平分,则此弦所在直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥S-ABCD中,底面ABCD为平行四边形,且AC⊥AB,O,E分别为BC,AB的中点.已知∠ABC=45°,AB=2,BC=2
2
,SA=SB=SC=
3

(Ⅰ)求证:平面SCB⊥平面ABCD;
(Ⅱ)求三棱锥S-ACD的体积;
(Ⅲ)求二面角S-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

正五边形的边与对角线所在的直线能围成
 
个三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
9
-
y2
6
=1的左焦点,且被双曲线截得线段长为6的直线的条数为
 

查看答案和解析>>

同步练习册答案