精英家教网 > 高中数学 > 题目详情
定义在正整数集上的分段函数f(x)=
1,x=1
x
5
,x是5的倍数
x-1,x是其它整数
,则满足f{f[f(x)]}=1的所有x的值的和等于
 
考点:分段函数的应用
专题:函数的性质及应用
分析:根据已知中分段函数f(x)=
1,x=1
x
5
,x是5的倍数
x-1,x是其它整数
,结合f{f[f(x)]}=1,求出所有x的值,进而可得答案.
解答: 解:∵函数f(x)=
1,x=1
x
5
,x是5的倍数
x-1,x是其它整数
,f{f[f(x)]}=1
∴f[f(x)]=1,或f[f(x)]=5,f[f(x)]=2,
∴f(x)=1,或f(x)=5,或f(x)=2,或f(x)=25,或f(x)=6,
∴x=1,或x=5,或x=2,或x=25,或x=6,或x=10,或x=3,或x=125,或x=26,或x=30,或x=7,
由1+5+2+25+6+10+3+125+26+30+7=250,
故答案为:250
点评:本题考查的知识点是分段函数的应用,本题算繁不算难,细心计算即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:
(1)(
2
-1)0+(
16
9
 -
1
2
+(
8
 -
4
3
;   
(2)lg25+2lg2-log32•log23+2 log23

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z=3+4i7,则|z|=(  )
A、
7
B、1
C、5
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

4
1+i
等于(  )
A、iB、1+i
C、1-iD、2-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为R,集合A={x|x≤0},B={x|-1<x<2},则A∩B=(  )
A、{x|x≤0}
B、{x|-1<x≤0}
C、{x|0≤x<2}
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|lgx≤0},B={x|2x≤1},全集U=R,则∁U(A∪B)=(  )
A、(-∞,1)
B、(1,+∞)
C、(-∞,1]
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
+lnx.
(1)若g(x)=f(x)-mx在[1,+∞)上为单调函数,求实数m的取值范围;
(2)若在[1,e]上至少存在一个x0,使得kx0-f(x0)>
2e
x0
成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:①a1=1;②所有项an∈N*;③1=a1<a2<…<an<an+1<…设集合Am={n|an≤m,m∈N*},将集合Am中的元素的最大值记为bm.换句话说,bm是数列{an}中满足不等式an≤m的所有项的项数的最大值.我们称数列{bn}为数列{an}的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.
(1)请写出数列1,4,7的伴随数列;
(2)设an=3n-1,求数列{an}的伴随数列{bn}的前20之和;
(3)若数列{an}的前n项和Sn=n2+c(其中c常数),求数列{an}的伴随数列{bm}的前m项和Tm

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标系xoy内,有曲线ξ:xy=η,(η,x>0),过ξ与其对称轴所在直线的交点作ξ的切线l,记l与x轴交点为P.若以O为圆心,以|
OP
|为半径做圆O交ξ与A,B两点,则△OAB是面积为
 
 
(形状)三角形.

查看答案和解析>>

同步练习册答案