精英家教网 > 高中数学 > 题目详情
15.(1)化简:$\frac{sin(π-α)cos(3π-α)tan(-α-π)tan(α-2π)}{tan(4π-α)sin(5π+a)}$.
(2)若α、β为锐角,且$cos(α+β)=\frac{12}{13}$,$cos(2α+β)=\frac{3}{5}$,求cosα的值.

分析 (1)使用诱导公式化简;
(2)根据角的范围计算sin(α+β),sin(2α+β).使用差角公式计算.

解答 解:(1)原式=$\frac{sinα•(-cosα)•(-tanα)•tanα}{-tanα•(-sinα)}$=sinα
(2)∵α、β为锐角,∴α+β∈(0,π),2α+β∈(0,$\frac{3π}{2}$).
∵cos(α+β)=$\frac{12}{13}$,cos(2α+β)=$\frac{3}{5}$,
∴$sin(α+β)=\frac{5}{13}$,$sin(2α+β)=\frac{4}{5}$.
∴cosα=cos((2α+β)-(α+β))=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β)
=$\frac{12}{13}×\frac{3}{5}+\frac{5}{13}×\frac{4}{5}$=$\frac{56}{65}$.

点评 本题考查了三角函数的化简求值,两角和差的余弦函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若tanθ=3,则2sin2θ-sinθcosθ-cos2θ=$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数$z=-1+\sqrt{3}i$,则$\frac{1}{z}$=(  )
A.$-\frac{1}{4}-\frac{{\sqrt{3}}}{4}i$B.$-\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$C.$\frac{1}{4}-\frac{{\sqrt{3}}}{4}i$D.$\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x)的图象是由y=sin2x向右平移$\frac{π}{12}$得到,则下列结论正确的是(  )
A.f(0)<f(2)<f(4)B.f(2)<f(0)<f(4)C.f(0)<f(4)<f(2)D.f(4)<f(2)<f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若loga3=m,loga5=n,则a2m+n=75.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在某省举办的运动会期间,某志愿者小组由12名大学生组成,其中男生8名,女生4名,从中抽取3名学生组成礼宾接待小组,则这3名学生恰好是按性别分层抽样得到的概率为$\frac{28}{55}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.
(1)l1⊥l2,且l1过点M(-3,-1);
(2)l1∥l2,且l1,l2在y轴上的截距互为相反数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,已知四棱锥P-ABCD,底面ABCD为正方形,PA⊥平面ABCD.
给出下列命题:
①PB⊥AC;
②平面PAB与平面PCD的交线与AB平行;
③平面PBD⊥平面PAC;
④△PCD为锐角三角形.
其中正确命题的序号是②③.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求证:sin2α•tanα+cos2α•cotα+2sinαcosα=$\frac{1}{sinαcosα}$.

查看答案和解析>>

同步练习册答案