分析 AC∩BD=O,由题意证明AC⊥PO,由已知可得AC⊥PA,与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾说明①错误;
由线面平行的判定和性质说明②正确;
由线面垂直的判定和性质说明③正确;
由勾股定理即可判断,说明④错误.
解答
解:如图,
①、若PB⊥AC,∵AC⊥BD,则AC⊥平面PBD,∴AC⊥PO,
又PA⊥平面ABCD,则AC⊥PA,在平面PAC内过P有两条直线与AC垂直,与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾.①错误;
②、∵CD∥AB,则CD∥平面PAB,∴平面PAB与平面PCD的交线与AB平行.②正确;
③、∵PA⊥平面ABCD,∴平面PAC⊥平面ABCD,
又BD⊥AC,∴BD⊥平面PAC,则平面PBD⊥平面PAC.③正确;
④、∵PD2=PA2+AD2,PC2=PA2+AC2,AC2=AD2+CD2,AD=CD,
∴PD2+CD2=PC2,
∴④△PCD为直角三角形,④错误,
故答案为:②③
点评 本题考查命题的真假判断与应用,考查了空间中直线和平面的位置关系,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 9 | C. | 28 | D. | 29 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日 期 | 5月1日 | 5月2日 | 5月3日 | 5月4日 | 5月5日 |
| 平均气温x(°C) | 9 | 10 | 12 | 11 | 8 |
| 销量y(杯) | 23 | 25 | 30 | 26 | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | $\sqrt{6}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com