精英家教网 > 高中数学 > 题目详情
函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则将y=f(x)的图象向右平移
π
6
个单位后,得到的图象的解析式为(  )
A、y=sin 2x
B、y=cos 2x
C、y=sin(2x+
3
D、y=sin(2x-
π
6
考点:函数y=Asin(ωx+φ)的图象变换
专题:计算题,三角函数的图像与性质
分析:通过函数的图象求出A,求出函数的周期,利用周期公式求出ω,函数过(
π
6
,1),结合φ的范围,求出φ,推出函数的解析式,通过函数图象的平移推出结果.
解答: 解:由图象知A=1,
1
4
T=
12
-
π
6
=
π
4
,T=π⇒ω=2,
由sin(2×
π
6
+φ)=1,|φ|<
π
2
π
3
+φ=
π
2
⇒φ=
π
6

⇒f(x)=sin(2x+
π
6
),
则图象向右平移
π
6
个单位后得到的图象解析式为y=sin[2(x-
π
6
)+
π
6
]=sin(2x-
π
6
),
故选:D.
点评:本题考查学生的识图能力,函数的解析式的求法,图象的变换,考查计算能力,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)证明AD⊥D1F;
(2)证明面AED⊥面A1FD1
(3)求AE与平面D1EF所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的结论中:
①双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1有相同的焦点;
②已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值不存在;
③双曲线
x2
a2
-
y2
b2
=1的左焦点为F1,顶点为A1、A2,P是双曲线上任意一点,则分别以线段PF1、A1A2为直径的两圆的位置关系为内切或外切;
④椭圆
x2
25
+
y2
16
=1的左右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为π,A,B两点的坐标分别为(x1,y1),(x2,y2),则|y1-y2|值为
5
3

其中结论正确的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-2)ex和g(x)=ax3+bx2+cx+d.
(1)求f(x)在点(0,f(0))处的切线方程;
(2)若b=-3,c=0,d=1时,g(x)在x∈(0,+∞)内只有一个零点,求a的取值范围;
(3)若b=0,c=-1,d=-2,当x∈[0,+∞)时,不等式f(x)≥g(x)恒成立,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在其定义域内既是奇函数又是减函数的是(  )
A、y=-lnx
B、y=x 
1
3
C、y=tanx
D、y=-x3-x

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=13,前n项和为Sn,且S3=S11,则使得Sn最大的正整数n为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

1
0
(4x-1)dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=lg(ax2-2x+1)的值域为R,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案