精英家教网 > 高中数学 > 题目详情
已知椭圆过点,且它的离心率.直线
与椭圆交于两点.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)当时,求证:两点的横坐标的平方和为定值;
(Ⅲ)若直线与圆相切,椭圆上一点满足,求实数的取值范围.
(Ⅰ)
(Ⅱ),为定值.
(Ⅲ)的取值范围为

试题分析:(Ⅰ) 设椭圆的标准方程为
由已知得:,解得   
所以椭圆的标准方程为:   4分
(Ⅱ) 由,得,设
,为定值. 9分
(Ⅲ)因为直线与圆相切
所以,     
代入并整理得:
,则有 

因为,, 所以,
又因为点在椭圆上, 所以,
.   因为    所以
所以 ,所以 的取值范围为 .     16分
点评:中档题,涉及椭圆的题目,在近些年高考题中是屡见不鲜,往往涉及求标准方程,研究直线与椭圆的位置关系。求标准方程,主要考虑定义及a,b,c,e的关系,涉及直线于椭圆位置关系问题,往往应用韦达定理。涉及直线于圆的位置关系问题,往往利用“特征三角形”。本题在应用韦达定理的基础上,得到参数的表达式,应用二次函数性质使问题得解。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

椭圆上的点到直线的距离的最小值为        。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y=2x于M(x,y),N(x,y)两点. ⑴写出直线L的方程;⑵求xx与yy的值;⑶求证:OM⊥ON

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,有一条长度为1的线段EF,其端点E、F分别在边长为3的正方形ABCD的四边上滑动,当F沿正方形的四边滑动一周时,EF的中点M所形成的轨迹长度最接近于(  )
A.8B.11
C.12D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线与双曲线的右支交于不同的两点,那么的取值范围是(  )
A.(B.(
C.(D.(

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直接坐标系xOy中,直线L的方程为x-y+4=0,曲线C的参数方程为.
(1)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线L的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以抛物线的焦点为圆心,且过坐标原点的圆的方程为(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为
则它的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点O和点F(﹣2, 0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为
A.B.
C.D.

查看答案和解析>>

同步练习册答案