精英家教网 > 高中数学 > 题目详情
在极坐标系中,已知圆C经过点P(
2
π
4
),圆心为直线ρsin(θ-
π
3
)=-
3
2
与极轴的交点,则圆C的极坐标方程是
 
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:把直线的极坐标方程化为直角坐标方程,求出圆心和半径,可得圆的标准方程,再化为极坐标方程.
解答: 解:点P(
2
π
4
)的直角坐标为(1,1),
直线ρsin(θ-
π
3
)=-
3
2
的直角坐标方程为
1
2
y-
3
2
x=-
3
2
,即
3
x-y-
3
=0,
此直线和极轴的交点为(1,0),即所求圆的圆心C,故半径为CP=1,
故所求的圆的方程为 (x-1)2+y2=1,化为极坐标方程为ρ=2cosθ,
故答案为:ρ=2cosθ.
点评:本题主要考查极坐标方程与直角坐标方程的互化,求圆的标准方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax2+2bx的单调递减区间为(-
1
3
,1),单调递增区间为(-∞,-
1
3
)和(1,+∞),
(1)求a,b的值;
(2)若不等式f(x)≥k2+7k在区间[-2,2]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

运行如图所示程序,输出的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若aij表示n×n阶矩阵
1247
35812
691318
10141925
?????ann
中第i行、第j列的元素(i、j=1,2,3,…,n),则ann=
 
(结果用含有n的代数式表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1的底面边长与侧棱长相等.蚂蚁甲从A点沿表面经过棱BB1,CC1爬到点A1,蚂蚁乙从B点沿表面经过棱CC1爬到点A1.如图,设∠PAB=α,∠QBC=β,若两只蚂蚁各自爬过的路程最短,则α+β=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义平面向量之间的一种运算“?”如下:对任意的
a
=(x1,y1),
b
=(x2,y2),令
a
?
b
=x1y2-x2y1,现有下列命题:
①若
a
b
共线,则
a
?
b
=0
a
?
b
=
b
?
a

③对任意的λ∈R,有(λ
a
)?
b
=λ(
a
?
b

④(
a
?
b
2+(
a
b
2=|
a
|2|
b
|2
其中的真命题是
 
(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

ρcosθ+2ρsinθ=1的直角坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知圆的方程是x2+(y-1)2=1,若以坐标原点O为极点,x轴的正半轴为极轴,则该圆的极坐标方程可写为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,若
OB
=a1
OA
+a20
OC
,且A、B、C三点共线(该直线不过点O),则S20=(  )
A、10B、11C、20D、21

查看答案和解析>>

同步练习册答案