精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)的图象的一条对称轴是直线x=$\frac{π}{8}$,则f(x)的单调递增区间是(  )
A.(-$\frac{3π}{8}+kπ,\frac{π}{8}+kπ$)k∈ZB.(-$\frac{3π}{8}+\frac{kπ}{2},\frac{π}{8}+\frac{kπ}{2}$)k∈Z
C.($\frac{π}{8}+kπ,\frac{5π}{8}+kπ$)k∈ZD.(-$\frac{3π}{8}+2kπ,\frac{π}{8}+2kπ$)k∈Z

分析 由对称性可得φ=$\frac{π}{4}$,进而可得f(x)=sin(2x+$\frac{π}{4}$),解不等式2kπ-$\frac{π}{2}$<2x+$\frac{π}{4}$<2kπ+$\frac{π}{2}$可得答案.

解答 解:∵函数f(x)=sin(2x+φ)的图象的一条对称轴是直线x=$\frac{π}{8}$,
∴2×$\frac{π}{8}$+φ=kπ+$\frac{π}{2}$,k∈Z,结合0<φ<$\frac{π}{2}$可得φ=$\frac{π}{4}$,
∴f(x)=sin(2x+$\frac{π}{4}$),
由2kπ-$\frac{π}{2}$<2x+$\frac{π}{4}$<2kπ+$\frac{π}{2}$可得kπ-$\frac{3π}{8}$<x<kπ+$\frac{π}{8}$
∴f(x)的单调递增区间为:(kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$)(k∈Z)
故选:A

点评 本题考查三角函数的单调性,涉及对称性和不等式的解法,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(℃)与该小卖部的这种饮料销量y(杯),得到如下数据:
日期1月11日1月12日1月13日1月14日1月15日
平均气温x(  )91012118
销量y(杯)2325302621
(1)若先从五组数据中,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程y=bx+a;并根据线性回归方程预测当天气预报1月16日的白天平均气温7(℃)时奶茶店这种饮料的销量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合S={x∈N|0<x<6},T={4,5,6}则S∩T=(  )
A.{1,2,3,4,5,6}B.{1,2,3}C.{4,5}D.{4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知约束条件$\left\{\begin{array}{l}x≥1\\ x+y-4≤0\\ kx-y≤0\end{array}\right.$表示的区域是一个三角形,则k取值范围是(  )
A.(-∞,-1)B.(-1,3)C.(-∞,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数a∈[-2,5],则a∈{x∈R|x2-2x-3≤0}的概率为$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了整顿食品的安全卫生,食品监督部门对某食品厂生产的甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,卞表是测量数据的茎叶图(单位:毫克) 
 
规定:当食品中的有害微量元素含量在[0,10]时为一等品,在(10,20]为二等品,20以上为劣质品.
(1)分别求出甲、乙两种食品该有害微量元素含量的样本平均数,并据此判定哪种食品的质量较好;
(2)若用分层抽样的方法,分别在两组数据中各抽取5个数据,分别求出甲、乙两种食品一等品的件数;
(3)在(2)的条件下,从甲组5个数据中随机抽取2个,求恰有一件一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.i为虚数单位,复数$\frac{2+i}{1-i}$=(  )
A.i-2B.2-iC.$\frac{1}{2}+\frac{3}{2}i$D.$\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设m∈R,过定点A的动直线mx+y=0与过定点B的动直线x-my-1+3m=0交于点P(x,y),则|PA|•|PB|的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为互相垂直的两个单位向量,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.$4\sqrt{2}$B.$2\sqrt{10}$C.$2\sqrt{13}$D.$2\sqrt{15}$

查看答案和解析>>

同步练习册答案