分析 由题意可得A(0,0),B(1,3),且两直线始终垂直,可得|PA|2+|PB|2=|AB|2=10.由基本不等式可得|PA|•|PB|≤$\frac{|PA{|}^{2}+|PB{|}^{2}}{2}$,验证等号成立即可.
解答 解:由题意可知,动直线x+my=0经过定点A(0,0),
动直线mx-y-m+3=0即 m(x-1)-y+3=0,经过点定点B(1,3),
∵动直线x+my=0和动直线mx-y-m+3=0始终垂直,P又是两条直线的交点,
∴有PA⊥PB,
∴|PA|2+|PB|2=|AB|2=10.
故|PA|•|PB|≤$\frac{|PA{|}^{2}+|PB{|}^{2}}{2}$=5(当且仅当|PA|=|PB|=$\sqrt{5}$时取“=”)
故答案为:5
点评 本题考查直线过定点问题,涉及基本不等式求最值,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{3π}{8}+kπ,\frac{π}{8}+kπ$)k∈Z | B. | (-$\frac{3π}{8}+\frac{kπ}{2},\frac{π}{8}+\frac{kπ}{2}$)k∈Z | ||
| C. | ($\frac{π}{8}+kπ,\frac{5π}{8}+kπ$)k∈Z | D. | (-$\frac{3π}{8}+2kπ,\frac{π}{8}+2kπ$)k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{{\sqrt{2}}}{6}$ | C. | $\frac{{\sqrt{3}}}{6}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com