精英家教网 > 高中数学 > 题目详情
17.已知a是实常数,函数f(x)=xlnx+ax2
(1)若曲线y=f(x)在x=1处的切线过点A(0,-2),求实数a的值;
(2)若f(x)有两个极值点x1,x2(x1<x2),
①求证:-$\frac{1}{2}$<a<0;
②求证:f(x2)>f(x1)>-$\frac{1}{2}$.

分析 (1)求出f(x)的导数,求得切线的斜率和切点,由点斜式方程可得切线方程,代入点(0,-2),即可解得a;
(2)①依题意:f′(x)=0 有两个不等实根x1,x2(x1<x2),设g(x)=lnx+2ax+1,求出导数,讨论当a≥0时,当a<0时,求得函数g(x)的单调性,令极大值大于0,解不等式即可得证;
②由①知:f(x),f′(x) 变化,求得f(x)的增区间,通过导数,判断x1∈(0,1),设h(x)=$\frac{1}{2}$(xlnx-x)(0<x<1),求得h(x)的单调性,即可得证.

解答 (1)解:由已知可得,f′(x)=lnx+1+2ax(x>0),切点P(1,a),
f(x)在x=1处的切线斜率为k=1+2a,
切线方程:y-a=(2a+1)(x-1),
把(0,-2)代入得:a=1;                 
(2)证明:①依题意:f′(x)=0 有两个不等实根x1,x2(x1<x2),
设g(x)=lnx+2ax+1   则:g′(x)=$\frac{1}{x}$+2a(x>0)
当a≥0时,有g′(x)>0,所以g(x)是增函数,不符合题意; 
当a<0时:由g′(x)=0得:x=-$\frac{1}{2a}$>0,
列表如下:

x(0,-$\frac{1}{2a}$)-$\frac{1}{2a}$(-$\frac{1}{2a}$,+∞)
g′(x)+0-
g(x)极大值
依题意:g(-$\frac{1}{2a}$)=ln(-$\frac{1}{2a}$)>0,解得:-$\frac{1}{2}$<a<0,
综上可得,-$\frac{1}{2}$<a<0得证;                                  
②由①知:f(x),f′(x) 变化如下:
x(0,x1x1(x1,x2x2(x2,+∞)
f′(x)-0+0-
f(x)
由表可知:f(x) 在[x1,x2]上为增函数,所以:f(x2)>f(x1)              
又f′(1)=g(1)=1+2a>0,故x1∈(0,1),
由(1)知:ax1=$\frac{-1-ln{x}_{1}}{2}$,f(x1)=x1lnx1+ax12=$\frac{1}{2}$(x1lnx1-x1)(0<x1<1)
设h(x)=$\frac{1}{2}$(xlnx-x)(0<x<1),则h′(x)=$\frac{1}{2}$lnx<0成立,所以h(x)单调递减,
故:h(x)>h(1)=-$\frac{1}{2}$,也就是f(x1)>-$\frac{1}{2}$
综上所证:f(x2)>f(x1)>-$\frac{1}{2}$成立.

点评 本题考查导数的运用:求切线方程和单调区间、极值,主要考查导数的几何意义和分类讨论的思想方法,注意函数的单调性的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知约束条件$\left\{\begin{array}{l}x≥1\\ x+y-4≤0\\ kx-y≤0\end{array}\right.$表示的区域是一个三角形,则k取值范围是(  )
A.(-∞,-1)B.(-1,3)C.(-∞,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设m∈R,过定点A的动直线mx+y=0与过定点B的动直线x-my-1+3m=0交于点P(x,y),则|PA|•|PB|的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择.调查资料表明,凡是在星期一选A种菜的学生,下星期一会有20%改选B种菜;而选B种菜的学生,下星期一会有30%改选A种菜.用an,bn分别表示在第n个星期的星期一选A种菜和选B种菜的学生人数,若a1=300,则an+1与an的关系可以表示为(  )
A.an+1=$\frac{1}{2}{a_n}$+150B.an+1=$\frac{1}{3}{a_n}$+200C.an+1=$\frac{1}{5}{a_n}$+300D.an+1=$\frac{2}{5}{a_n}$+180

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知二次函数f(x)=ax2+bx,则“f(2)≥0”是“函数f(x)在(1,+∞)上为增函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从1,2,3,…,9这9个数中任取5个不同的数,则这5个数的中位数是5的概率等于(  )
A.$\frac{5}{7}$B.$\frac{5}{9}$C.$\frac{2}{7}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为互相垂直的两个单位向量,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.$4\sqrt{2}$B.$2\sqrt{10}$C.$2\sqrt{13}$D.$2\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义域为D的单调函数y=f(x),如果存在区间[m,n]⊆D,满足当定义域为是[m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“可协调区间”;如果函数y=$\frac{({a}^{2}+a)x-1}{{a}^{2}x}$(a≠0)的一个可协调区间是[m,n],则实数a的取值范围是(  )
A.-3<a<1B.-3<a<0C.0<a<1D.a<-3或a>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线x2=2py(p>0)的焦点F与椭圆$\frac{y^2}{4}$+$\frac{x^2}{3}$=1的一个焦点重合.
(Ⅰ)求抛物线的方程;
(Ⅱ)直线y=kx+1交抛物线于A,B两点,过A,B分别作抛物线的切线交于点P.
(ⅰ)探究$\overrightarrow{PF}•\overrightarrow{AB}$是否为定值,若是,求出定值;若不是,请说明理由;
(ⅱ)若直线PF与抛物线交于C,D,求证:|PC|•|FD|=|PD|•|FC|.

查看答案和解析>>

同步练习册答案