精英家教网 > 高中数学 > 题目详情
13.函数f(x)=log2|x|的定义域是(-∞,0)∪(0,+∞),单调递增区间是(0,+∞).

分析 根据对数函数f(x)的解析式,得出真数|x|>0,求出解集即得函数f(x)的定义域;
再讨论f(x)的单调性,求出f(x)的单调递增区间.

解答 解:∵函数f(x)=log2|x|,
∴|x|>0;
即x≠0,
∴f(x)的定义域是(-∞,0)∪(0,+∞);
又∵x>0时,f(x)=log2|x|=log2x是增函数,
x<0时,f(x)=log2|x|=log2(-x)是减函数,
∴f(x)的单调递增区间是(0,+∞).
故答案为(-∞,0)∪(0,+∞);(0,+∞).

点评 本题考查了求对数函数的定义域和单调区间的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设椭圆C1与抛物线C2的焦点均在x轴上,C1的中心及C2的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:
x3-24$\sqrt{2}$ 
y-2$\sqrt{3}$0-4 $\frac{\sqrt{2}}{2}$
(1)求曲线C1、C2的标准方程;
(2)设直线l过抛物线C2的焦点F,l与椭圆交于不同的两点M,N,当$\overrightarrow{OM}•\overrightarrow{ON}$=0时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了整顿食品的安全卫生,食品监督部门对某食品厂生产的甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,卞表是测量数据的茎叶图(单位:毫克) 
 
规定:当食品中的有害微量元素含量在[0,10]时为一等品,在(10,20]为二等品,20以上为劣质品.
(1)分别求出甲、乙两种食品该有害微量元素含量的样本平均数,并据此判定哪种食品的质量较好;
(2)若用分层抽样的方法,分别在两组数据中各抽取5个数据,分别求出甲、乙两种食品一等品的件数;
(3)在(2)的条件下,从甲组5个数据中随机抽取2个,求恰有一件一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知公比为q的等比数列{an},满足a1+a2+a3=-8,a4+a5+a6=4,则$\frac{{a}_{1}}{1-q}$=-$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设m∈R,过定点A的动直线mx+y=0与过定点B的动直线x-my-1+3m=0交于点P(x,y),则|PA|•|PB|的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}(3-a)x-3(x≤7)\\{a^{x-6}}(x>7)\end{array}$,数列{an}满足an=f(n),n∈N*,若数列{an}是单调递增数列,则$\frac{{{a^2}+3a+6}}{a+1}$的取值范围是 $[\frac{16}{3},6)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择.调查资料表明,凡是在星期一选A种菜的学生,下星期一会有20%改选B种菜;而选B种菜的学生,下星期一会有30%改选A种菜.用an,bn分别表示在第n个星期的星期一选A种菜和选B种菜的学生人数,若a1=300,则an+1与an的关系可以表示为(  )
A.an+1=$\frac{1}{2}{a_n}$+150B.an+1=$\frac{1}{3}{a_n}$+200C.an+1=$\frac{1}{5}{a_n}$+300D.an+1=$\frac{2}{5}{a_n}$+180

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从1,2,3,…,9这9个数中任取5个不同的数,则这5个数的中位数是5的概率等于(  )
A.$\frac{5}{7}$B.$\frac{5}{9}$C.$\frac{2}{7}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛物线x2=y的准线方程是(  )
A.x=$\frac{1}{2}$B.y=$\frac{1}{2}$C.x=-$\frac{1}{4}$D.$y=-\frac{1}{4}$

查看答案和解析>>

同步练习册答案